Project description:Bone marrow macrophages were cultured from 16 week old apoE-deficient F2 mice from an AKRxDBA/2 intercross; Gene expression profiling was performed using Affy 430v2 arrays, and 1967 informative SNP markers were genotyped for each mouse; Supplementary file of SNP data attached below from ParAllele 5K mouse linkage panel Experiment Overall Design: Expression QTLs and sex effects on gene expression and eQTLs were determined
Project description:We have combined large-scale mRNA expression and gene mapping methods to identify genes and loci that control hematopoietic stem cell (HSC) functioning. mRNA expression levels were measured in purified HSC isolated from a panel of densely genotyped recombinant inbred mouse strains. Quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts were mapped. Comparison of the physical transcript position with the location of the controlling QTL identified polymorphic cis-acting stem cell genes. In addition, multiple trans-acting control loci were highlighted that modify expression of large numbers of genes. These groups of co-regulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of strong candidate genes involved with HSC turnover. We compared expression QTLs in HSC and brain from the same animals, and document both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of co-regulated transcripts.
Project description:We have combined large-scale mRNA expression and gene mapping methods to identify genes and loci that control hematopoietic stem cell (HSC) functioning. mRNA expression levels were measured in purified HSC isolated from a panel of densely genotyped recombinant inbred mouse strains. Quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts were mapped. Comparison of the physical transcript position with the location of the controlling QTL identified polymorphic cis-acting stem cell genes. In addition, multiple trans-acting control loci were highlighted that modify expression of large numbers of genes. These groups of co-regulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of strong candidate genes involved with HSC turnover. We compared expression QTLs in HSC and brain from the same animals, and document both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of co-regulated transcripts. Keywords: other
Project description:Purpose: The goal of this study is to construct an interspecific genetic linkage map using SNP markers generated using a genotyping by sequencing transcript approach. Methods: mRNA profiles of 14-day-old parents and 140 recombinant inbred lines were generated by high-throughput sequencing using Illumina HiSeq 3000 system. The sequence reads that passed filtering were mapped to lentil cultivar Cassab reference transcriptome using Burrows Wheeler Aligner and the SNPs generated were then clustered to linkage groups (LG) to construct a high-density linkage map using the ‘mstmap’ function from within the ASMap R package (v1.0-4) (Taylor and Butler, 2017). Results: A total of 694,694,624 paired end reads (150-bp) were generated by sequencing multiplexed cDNA libraries on the Illumina HiSeq 3000 platform with an average of 4,997,803 reads per RIL progeny. Variant calling and sequential filtering led to identification of 2,363 SNP markers which were used to construct a genetic linkage map spanning 545.5 cM with 8 linkage groups. Conclusions: The study has utilized a novel interspecific-derived RIL population to add an array of SNPs to the existing marker data for lentil, which will be of use in future genetic and genomic analyses.
2021-06-09 | GSE176412 | GEO
Project description:GBS based linkage mapping in sugarcane