Project description:Myocarditis is an inflammatory disease of the cardiac muscle characterized by an influx of inflammatory cells, predominantly of myeloid lineage. The progression of myocarditis to a dilated cardiomyopathy phenotype and heart failure is markedly influenced by TGF-β signalling. The aim of this study was to investigate the role of TGF-β signalling in inflammatory cardiac macrophages in the development of myocarditis and post-inflammatory fibrosis. Experimental autoimmune myocarditis (EAM) was induced in the LysM-Cre x R26-stop-EYFP x Tgfbr2-fl/fl transgenic mice showing impaired TGF-β signalling in the myeloid lineage and the LysM-Cre x R26-stop-EYFP control mice. Inflammatory macrophages were sorted from the inflamed hearts and analyzed for differential gene expression using whole genome transcriptomics.
Project description:Chronic chagasic cardiomyopathy is one of the leading causes of heart failure in Latin American countries, being associated with intense inflammatory response and fibrosis. We have previously shown that bone marrow mononuclear cell (BMC) transplantation improves inflammation, fibrosis and ventricular diameter in hearts of mice with chronic Chagas’ disease. Here we investigated alterations of gene expression in the hearts of chronic chagasic mice submitted or not to BMC therapy. C57Bl/6 mice chronically infected with T. cruzi (6 months) were transplanted with BMC or saline i.v. and sacrificed 2 months later. RNA was extracted from the hearts of normal controls, chagasic and BMC transplanted mice and microarray analysis was performed using MO30k oligonucleotide arrays. Out of the 9390 unigenes quantified in all samples, 1702 had their expression altered in chronic chagasic hearts compared to those of normal mice. Major categories of significantly upregulated genes were related to inflammation, fibrosis and immune responses, while genes involved in mitochondrion function were downregulated. When BMC-treated chagasic hearts were compared to infected mice, 1631 (96%) of the alterations detected in infected hearts were not found, although an additional 109 genes were altered by treatment, indicating a remarkable 84% transcriptomic recovery. Immunofluorescence and morphometric analyses confirmed the effects of BMC therapy in the pattern of inflammatory-immune response and expression of adhesion molecules. Our results demonstrate important immunomodulatory effects of BMC therapy in chagasic cardiomyopathy and indicate potentially relevant factors involved in the pathogenesis of the disease that may provide new therapeutic targets.
Project description:Global gene expression is altered in heart failure. This syndrome can be caused by cardiovascular diseases, including dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), hypertrophic cardiomyopathy, viral or toxic myocarditis, hypertension, and valvular diseases. We used microarrays to evaluate the impact of heart failure on human nucleocytoplasmic transport-related genes examining simultaneoulsly both dilated and ischemic human cardiomyopathies compared to normal hearts.
Project description:Chronic chagasic cardiomyopathy is one of the leading causes of heart failure in Latin American countries, being associated with intense inflammatory response and fibrosis. We have previously shown that bone marrow mononuclear cell (BMC) transplantation improves inflammation, fibrosis and ventricular diameter in hearts of mice with chronic Chagas’ disease. Here we investigated alterations of gene expression in the hearts of chronic chagasic mice submitted or not to BMC therapy. C57Bl/6 mice chronically infected with T. cruzi (6 months) were transplanted with BMC or saline i.v. and sacrificed 2 months later. RNA was extracted from the hearts of normal controls, chagasic and BMC transplanted mice and microarray analysis was performed using MO30k oligonucleotide arrays. Out of the 9390 unigenes quantified in all samples, 1702 had their expression altered in chronic chagasic hearts compared to those of normal mice. Major categories of significantly upregulated genes were related to inflammation, fibrosis and immune responses, while genes involved in mitochondrion function were downregulated. When BMC-treated chagasic hearts were compared to infected mice, 1631 (96%) of the alterations detected in infected hearts were not found, although an additional 109 genes were altered by treatment, indicating a remarkable 84% transcriptomic recovery. Immunofluorescence and morphometric analyses confirmed the effects of BMC therapy in the pattern of inflammatory-immune response and expression of adhesion molecules. Our results demonstrate important immunomodulatory effects of BMC therapy in chagasic cardiomyopathy and indicate potentially relevant factors involved in the pathogenesis of the disease that may provide new therapeutic targets. We compared RNA samples extracted from whole hearts of 4 control, 4 chagasic and 4 BMC-treated chagasic mice by analyzing hybridization to microarrays printed by Duke University (http://www.ncbi.nlm.nih.gove/geo/query/acc.cgi?acc=GPL8938) spotted with MO30k mouse Operon version 3.0 70-mer oligonucleotides. The hybridization protocol (see Soares et al, 2010), the slide type and the scanner settings were uniform throughout the entire experiment to minimize the technical noise. Briefly, 20 ug total RNA extracted in Trizol from each of the twelve samples (individual hearts) was reverse transcribed in the presence of fluorescent Alexa Fluor® 555- and Alexa Fluor®647-aha-dUTPs (Invitrogen, Carlsbad, CA) to obtain labeled cDNA. Red and green labeled samples of biological replicas were then co-hybridized (“multiple yellow” strategy, 22) overnight at 50° C. After washing (0.1% SDS and 1% SSC) to remove the non-hybridized cDNA, each array was scanned at 630V (635 nm) and 580V (532 nm) with GenePix 4100B scanner (Axon Instruments, Union City, CA) and images were primarily analyzed with GenePixPro 6.0 (Molecular Devices, Sunnyvale, CA). Microarray data were processed as described previously (Soares et al, 2010). A gene was considered as significantly up- or down-regulated when comparing four hearts from one condition to those from another if the absolute fold change was >1.5x and the p-vlaue of the Sutdent”s heteroscedastic t-test of equality of the means of the distributions with a Bonferroni-type adjustment for each redundancy group (set of spots probing the same gene) was <0.05.
Project description:To investigate the differences in microRNA expression profiles between fibrotic and normal livers, we performed microRNA microarrays for total RNA extracts isolated from mouse livers treated with carbontetrachloride (CCl4) or corn-oil for 10 weeks (n=3/group). MicroRNAs were considered to have significant differences in expression level when the expression difference showed more than two-fold change between the experimental and control groups at p<0.05. We found that 12 miRNAs were differentially expressed in CCl4-induced fibrotic liver. To induce chronic liver fibrosis, seven-week-old mice received 0.6 ml/kg body weight of carbon-tetrachloride (CCl4) dissolved in corn-oil by intraperitoneal (i.p.) injection, twice a week for 10 weeks (n=3). As a control, same number of mice was injected with equal volume of corn-oil for 10 weeks.
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:Heart failure with preserved ejection fraction (HFpEF) is a prevalent health condition associated with high morbidity and mortality, but currently, there are few effective therapies. Our previous research showed that inhibiting histone deacetylase 6 (HDAC6) had a beneficial effect on a genetic cardiomyopathy model. The overlapping underlying mechanisms involving inflammation and metabolism between cardiomyopathy and HFpEF prompted us to explore the role of HDAC6 in HFpEF. The results showed that inhibiting HDAC6 with TYA-018 reversed preexisting cardiac hypertrophy and diastolic dysfunction, and improved lung congestion and exercise capacity in mouse models of HFpEF, including a newly developed model that combines moderate trans-aortic constriction and high-fat diet to mimic the systemic and cardiovascular features of human HFpEF. Moreover, mice with genetic Hdac6 deletion delayed the development of HFpEF and were resistant to the effects of TYA-018. The efficacy of TYA-018 was comparable to a SGLT2 inhibitor, and the combination showed increased effects. Mechanistically, TYA-018 restored expression of gene sets associated with hypertrophy, fibrosis, and mitochondrial energy production in heart tissue from HFpEF mice. TYA-018 also inhibited activation of human cardiac fibroblasts and increased mitochondrial respiratory capacity in induced pluripotent stem cell–derived cardiomyocytes. These findings support the direct role of HDAC6 on HFpEF pathophysiology in the heart and that inhibiting HDAC6 may be a promising approach to treating HFpEF.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.