Project description:Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas can be tolerant to relative low salinity. Through Illumina sequencing, we generated two transcriptomes with samples taken from gills of oysters exposed to the low salinity seawater versus the optimal seawater. By RNAseq technology, we found 1665 up-regulation genes and 1815 down-regulation genes that may regulate osmotic stress in C. gigas. As blasted by GO annotation and KEGG pathway mapping, functional annotation of the genes recovered diverse biological functions and processes. The genes regulated significantly were dominated in cellular process and regulation of biological process, intracellular and cell, binding and protein binding according to GO annotation. The results highlight genes related to osmoregulation and signaling and interactions of osmotic stress response, anti-apoptotic reactions as well as immune response, cell adhesion and communication, cytosqueleton and cell cycle. The study aimed to compare the expression data of the two transcriptomes to provide some useful insights into signal transduction pathways in oysters and offer a number of candidate genes as potential markers of tolerance to hypoosmotic stress for oysters. In addition, the characterization of C. gigas transcriptome will facilitate research into biological processes underlying physiological adaptations to hypoosmotic shock for marine invertebrates. Twelve Pacific oysters were exposed in low salinity (8‰) seawater and in optimal salinity (25‰) seawater, respectively. Gills from six oysters in each condition were balanced mixed respectively. The transcriptomes of two samples were generated by deep sequencing, using Illumina HiSeq2000.
Project description:Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas can be tolerant to relative low salinity. Through Illumina sequencing, we generated two transcriptomes with samples taken from gills of oysters exposed to the low salinity seawater versus the optimal seawater. By RNAseq technology, we found 1665 up-regulation genes and 1815 down-regulation genes that may regulate osmotic stress in C. gigas. As blasted by GO annotation and KEGG pathway mapping, functional annotation of the genes recovered diverse biological functions and processes. The genes regulated significantly were dominated in cellular process and regulation of biological process, intracellular and cell, binding and protein binding according to GO annotation. The results highlight genes related to osmoregulation and signaling and interactions of osmotic stress response, anti-apoptotic reactions as well as immune response, cell adhesion and communication, cytosqueleton and cell cycle. The study aimed to compare the expression data of the two transcriptomes to provide some useful insights into signal transduction pathways in oysters and offer a number of candidate genes as potential markers of tolerance to hypoosmotic stress for oysters. In addition, the characterization of C. gigas transcriptome will facilitate research into biological processes underlying physiological adaptations to hypoosmotic shock for marine invertebrates.
Project description:Marine intertidal organisms commonly face hypoxic stress during low tide emersion; moreover, eutrophic conditions and sediment nearness could lead to hypoxic phenomena; it is indeed important to understand the molecular processes involved in the response to hypoxia. In this study the molecular response of the Pacific oyster Crassostrea gigas to prolonged hypoxia (2 mg O2 L-1 for 20 d) was investigated under experimental conditions. A transcriptomic approach was employed using a cDNA microarray of 9058 C. gigas clones to highlight the genetic expression patterns of the Pacific oyster under hypoxic conditions. Lines of oysters resistant (R) and susceptible (S) to summer mortality were used in this study. This is the first study employing microarrays to characterize the genetic markers and metabolic pathways responding to hypoxic stress in C. gigas.
Project description:Deep sequencing of samples from different development stages, different adult organs and different stress treatments of Pacific oyster Crassostrea gigas Samples of 38 developmental stages from egg to juvenile were analyzed using single-end 49 bp RNA-seq. Two libraries mixed by RNAs from different developmental stages were analyzed using paired-end 90 bp RNA-seq. A total of 11 samples mainly from 8 organs (mantle, gill,adductor muscle, digestive gland, hemocyte, labial palp, female gonad and male gonad) were analyzed using paired-end 90 bp RNA-seq. At the same time, single-end 49 bp RNA-seq was conducted on 61 samples collected from adult oysters subjected to 9 types of environmental stressors (exposure to air, salinity, temperature, and exposure to metals).
Project description:Additive transcriptomic variation associated with reproductive traits suggest local adaptation in a recently settled population of the Pacific oyster, Crassostrea gigas