Project description:Proteomes of Vibrio sp. 1A01 exponentially growing on various carbon sources as well as on chitin. Chitin samples contain planktonic cells, particle-associated proteins and excreted proteins.
Project description:Brown macroalgae holds an enormous potential as a future feedstock because it rapidly forms large biomasses and has high carbohydrate content (35% of its dry weight consists of alginate and mannitol). However, utilization of brown macroalgae by conventional microbial platforms (e.g., Escherichia coli and Saccharomyces cerevisiae) has been limited due to the inability of these platforms to metabolize alginate. Although recent studies engineered them to utilize alginate, their growth rates and metabolic activities are still too low for industrial applications, likely due to the unoptimized expression of multiple xenogeneic genes. Here, we isolated Vibrio sp. dhg, a novel, fast-growing bacterium that has been naturally evolved for efficient alginate assimilation (growth rate = 0.98 h-1). Especially, both the growth rate and sugar uptake rate of V. sp. dhg are substantially higher than the rates of E. coli for most biomass-derivable sugars. Based on our systematic characterization of its metabolism and gene expression architecture, we were able to develop a genetic toolbox for its engineering. By using this microorganism, we successfully demonstrated its ability to produce a broad spectrum of chemicals from alginate-mannitol mixtures with high productivities (1.1 g ethanol/L/h, 1.3 g 2,3-butanediol and acetoin/L/h, and 0.69 mg lycopene/L/h). Collectively, the V. sp. dhg strain is a powerful platform for the conversion of brown macroalgae sugars whose usage will dramatically accelerate the production of value-added biochemicals in the future.
Project description:Background: Sm proteins are multimeric RNA-binding factors, found in all three domains of life. Eukaryotic Sm proteins, together with their associated RNAs, form small ribonucleoprotein (RNP) complexes important in multiple aspects of gene regulation. Comprehensive knowledge of the RNA components of Sm RNPs is critical for understanding their functions. Results: We developed a multi-targeting RNA-immunoprecipitation sequencing (RIP-seq) strategy to reliably identify Sm-associated RNAs from Drosophila ovaries and cultured human cells. Using this method, we discovered three major categories of Sm-associated transcripts: small nuclear (sn)RNAs, small Cajal body (sca)RNAs and mRNAs. Additional RIP-PCR analysis showed both ubiquitous and tissue-specific interactions. We provide evidence that the mRNA-Sm interactions are mediated by snRNPs, and that one of the mechanisms of interaction is via base pairing. Moreover, the Sm-associated mRNAs are mature, indicating a splicing-independent function for Sm RNPs. Conclusions: This study represents the first comprehensive analysis of eukaryotic Sm-containing RNPs, and provides a basis for additional functional analyses of Sm proteins and their associated snRNPs outside of the context of pre-mRNA splicing. Our findings expand the repertoire of eukaryotic Sm-containing RNPs and suggest new functions for snRNPs in mRNA metabolism. RNA-Immunoprecipitation sequencing of RNA-Sm protein complexes.