Project description:Significant attention has been garnered in proteomic research on Pinus koraiensis infected by Bursaphelenchus xylophilus. This destructive nematode parasite disrupts the cellular structure of the pine, resulting in wilt and death. The key proteins involved in nematode secretion, cell wall degradation, and host defense responses are currently under investigation.
Project description:This study compared the different gene expression of Bursaphelenchus xylophilus in two growth conditions (growing on Botrytis cinerea and inoculating Pinus thunbergii). The goal was to analyze the specifically-expressed genes of the pine wood nematode involved in the early interaction between B. xylophilus and P. thunbergii and screen the pathogenesis related genes of B. xylophilus. Two-condition experiment, Growing on Botrytis cinerea vs. Inoculating Pinus thunbergii . Biological replicates: 3 replicates.
Project description:Using pine wood nematode resistant Pinus massoniana clones as materials, after inoculation with pine wood nematode, needles from 5 locations of the same plant were collected and mixed as a biological replicate at 0d,3d and 10d, and a total of two biological replicates were performed for proteomics analysis based on TMT tags.
Project description:This study compared the different gene expression of Bursaphelenchus xylophilus in two growth conditions (growing on Botrytis cinerea and inoculating Pinus thunbergii). The goal was to analyze the specifically-expressed genes of the pine wood nematode involved in the early interaction between B. xylophilus and P. thunbergii and screen the pathogenesis related genes of B. xylophilus.
Project description:to profile the adverse effects of an emamectin benzoate trunk-injection agent on pine wood nematode Bursaphelenchus xylophilus by analysing differential transcripts from the nematode whole genome through next-generation high-throughput sequencing.
Project description:DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pine wood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives and spreads at low temperatures through third-stage dispersal larvae, making it a major pathogen for pine wood in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal larvae, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal larvae and three other stages propagative larvae of PWN.
Project description:DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pine wood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives and spreads at low temperatures through third-stage dispersal larvae, making it a major pathogen for pine wood in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal larvae, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal larvae and three other stages propagative larvae of PWN.
2023-10-12 | GSE242181 | GEO
Project description:Transcriptomic analysis of Pinus sylvestris var. mongolica infected with pine wood nematode.
Project description:Pine wilt disease is a worldwide dangerous pine disease. We used Masson pine (Pinus massoniana) clones, selected through traditional breeding and testing for 20 years, with high resistance to study the molecular mechanism of resistance to pine wood nematode (PWN, Bursaphelenchus xylophilus). A total of 3491 proteins were identified from seedling tissue, among which 2783 proteins contained quantitative information. Total 42 proteins were up-regulated and 96 proteins were down-regulated in resistant lines. Of them, function enrichment analysis found that significant differences in proteins with pectin esterase activity or peroxidase activity. Proteins participating in salicylic acid metabolism, antioxidant stress reaction, polysaccharide degradation, glucose acid ester sheath lipid biosynthesis, sugar glycosaminoglycans degradation pathway also changed significantly. PRM results showed that pectin acetyl esterase, carbonic anhydrase, peroxidase and chitinase were significantly down-regulated, while aspartic protease was significantly up-regulated, which was consistent with proteomic data.These results suggested that Masson pine could degrade nematode-related proteins by increasing protease to inhibit their infestation, and enhance the resistance of Masson pine to PWN by down-regulating the carbon metabolism to limit available carbon to PWN or to be involved in cell wall components or tissue softening. Most downregulated proteins seem to take back seats prior to pathogen attacks. The highly resistant Masson pine, very likely, has evolved multiple pathways, both the passive and active, to defense against PWN infestation.