Project description:Next Generation Sequencing in cancer: a feasibility study in France to assess sample circuit and to perform analyzes within a limited time.
Project description:Development of an alternative method to ChIP for the identification of DNA bound by transcriptional complexes assayed using next-generation sequencing Next-generation sequencing data from sites identified by different Notch complexes using SpDamID-seq and compared against FAIRE and ChIP data
Project description:Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients, and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care and maximize treatment effectiveness and survival. To address these challenges, the Sweden Cancerome Analysis Network - Breast (SCAN-B) consortium was initiated in 2010 as a multicenter prospective study with longsighted aims to 1) analyze breast cancers with next-generation genomic technologies for translational research in a population-based manner and integrated with healthcare; 2) decipher fundamental tumor biology from these analyses; 3) utilize genomic data to develop and validate new clinically-actionable biomarker assays; and 4) build the infrastructure for real-time clinical implementation of molecular diagnostic, prognostic, and predictive tests. In the first phase, we focus on molecular profiling by next-generation RNA-sequencing on the Illumina platform. In the three years from August 30, 2010 through August 31, 2013, we have consented and enrolled 3,979 patients with primary breast cancer at the seven hospital sites in South Sweden, representing approximately 85% of eligible patients in the catchment area. Pre-operative blood samples have been collected for 3,942 (99%) patients and primary tumor specimens collected for 2,929 (74%) patients. Herein we describe the study infrastructure and present initial proof of concept results from prospective RNA-sequencing including tumor molecular subtyping and detection of driver gene mutations. We demonstrate that large-scale population-based collection and RNA-sequencing analysis of breast cancer is feasible. The SCAN-B Initiative should significantly reduce the time to discovery, validation, and clinical implementation of novel molecular diagnostic and predictive tests. We welcome the participation of additional comprehensive cancer treatment centers. Due to privacy concerns, submitters were not allowed to release the actual sequencing reads
Project description:Most proteogenomic approaches for mapping single amino acid polymorphisms (SAPs) require construction of a sample-specific database containing protein variants predicted from the next-generation sequencing (NGS) data. We present a new strategy for direct SAP detection without relying on NGS data. Among the 348 putative SAP peptides identified in an industrial yeast strain, 85.6% of SAP sites were validated by genomic sequencing.
Project description:The objective of this study is to optimize the search by next-generation sequencing (NGS) mutations in the KRAS, BRAF and NRAS on circulating tumor DNA and compare the genetic profiles obtained with those from tumors embedded in paraffin
Project description:Validation of methylation data for 9 osteosarcoma Patient tumours and PDXs by MeDIP followed by next generation sequencing 9 samples, MeDIP done with Diagenode kit and libraries prepped using NEB kit, sequenced on HiSeq 2000
Project description:Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients, and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care and maximize treatment effectiveness and survival. To address these challenges, the Sweden Cancerome Analysis Network - Breast (SCAN-B) consortium was initiated in 2010 as a multicenter prospective study with longsighted aims to 1) analyze breast cancers with next-generation genomic technologies for translational research in a population-based manner and integrated with healthcare; 2) decipher fundamental tumor biology from these analyses; 3) utilize genomic data to develop and validate new clinically-actionable biomarker assays; and 4) build the infrastructure for real-time clinical implementation of molecular diagnostic, prognostic, and predictive tests. In the first phase, we focus on molecular profiling by next-generation RNA-sequencing on the Illumina platform. In the three years from August 30, 2010 through August 31, 2013, we have consented and enrolled 3,979 patients with primary breast cancer at the seven hospital sites in South Sweden, representing approximately 85% of eligible patients in the catchment area. Pre-operative blood samples have been collected for 3,942 (99%) patients and primary tumor specimens collected for 2,929 (74%) patients. Herein we describe the study infrastructure and present initial proof of concept results from prospective RNA-sequencing including tumor molecular subtyping and detection of driver gene mutations. We demonstrate that large-scale population-based collection and RNA-sequencing analysis of breast cancer is feasible. The SCAN-B Initiative should significantly reduce the time to discovery, validation, and clinical implementation of novel molecular diagnostic and predictive tests. We welcome the participation of additional comprehensive cancer treatment centers.
2014-12-31 | GSE60785 | GEO
Project description:Next-generation sequencing data of Fraxinus
Project description:Bacteria isolated from potato scab lesions in Finland or northern Sweden were analyzed using microarrays, PCR, and sequencing. Data indicate wide genetic variability in pathogenicity islands among S.turgidiscabies and S.scabies strains.