Project description:We apply 3D directed induced transfer culture system alongsideand ultra-high speed centrifugation technology to break through the mass production bottleneck of ht-SKPs-EV (human transformed skin-derived precursors). We hope to compare its protein expression with that of fibroblasts extracellular vesicles (FBs-EV) in traditional adherent culture mode.The experimental procedure for analyzing ht-SKPs-EV and FBs-EV proteins using proteomics involves extracting proteins from ht-SKPs-EV and FBs-EV, subjecting them to gel electrophoresis, transferring the proteins onto a membrane, probing with specific antibodies, and detecting the protein bands to assess expression levels.
Project description:In the research field of extracellular vesicles (EVs), the use of EV-depleted fetal bovine serum (FBS) for in vitro studies is highly recommended to eliminate the confounding effects of media derived EVs. EV-depleted FBS may either be prepared by ultracentrifugation or bought commercially, nevertheless these depletion methods do not guarantee an RNA-free preparation. In this study we have addressed the RNA contamination issue in FBS, ultracentrifuged EV-depleted FBS, commercially available EV-depleted FBS, and also from our recently developed filtration based EV depleted FBS. Commercially available serum-free, xeno-free defined media were also screened for RNA contamination.
Project description:The release of extracellular vesicles (EVs) in cell cultures as well as their molecular cargo can be influenced by cell culture conditions such as the presence of foetal bovine serum (FBS). Although several studies have evaluated the effect of removing FBS-derived EVs by ultracentrifugation (UC), less is known about the influence of FBS heat inactivation (HI) on the cell-derived EVs. To assess this, three protocols based on different combinations of EV depletion by UC and HI were evaluated, including FBS ultracentrifuged but not heat inactivated (no-HI FBS), FBS heat inactivated before EV depletion (HI-before EV-depl FBS), and FBS heat inactivated after EV depletion (HI-after EV-depl FBS). We isolated large (L-EVs) and small EVs (S-EVs) from FBS treated in the three different ways, and we found that the S-EV pellet from HI-after EV-depl FBS was larger than the S-EV pellet from no-HI FBS and HI-before EV-depl FBS. Transmission electron microscopy, protein quantification, and particle number evaluation showed that HI-after EV-depl significantly increased the protein amount of S-EVs but had no significant effect on L-EVs. Consequently, the protein quantity of S-EVs isolated from three cell lines cultured in media supplemented with HI-after EV-depl FBS was significantly increased. Quantitative mass spectrometry analysis of FBS-derived S-EVs showed that the EV protein content was different when FBS was HI after EV depletion compared to EVs isolated from no-HI FBS and HI-before EV-depl FBS. Moreover, we show that several quantified proteins could be ascribed to human origin demonstrating that FBS bovine proteins can mistakenly be attributed to human cell-derived EVs. We conclude that HI of FBS performed after EV depletion results in changes in the proteome, with molecules that co-isolate with EVs and can contaminate EVs when used in subsequent cell cultures. Our recommendation is therefore to always perform HI of FBS prior to EV depletion.
Project description:Fetal bovine serum (FBS) has been used in eukaryotic cell cultures for decades, and it represents one of the most commonly used reagents in life science research. However, little attention has been paid to the biological effects associated with RNA content of FBS on cell cultures. Here we report that FBS contains a diverse repertoire of protein-coding and regulatory RNA species, including mRNA, miRNA, rRNA, and snoRNA. The majority of them (>70%) are retained even after extended ultracentrifugation in the preparations of vesicle-depleted FBS (vdFBS) commonly utilized in the studies of extracellular vesicles (EV) and intercellular communication. FBS-associated RNA is co-isolated with cell-culture derived extracellular RNA (exRNA) and interferes with the downstream RNA analysis. Many evolutionally conserved FBS-derived RNA species can be falsely annotated as human or mouse transcripts. Notably, specific miRNAs abundant in FBS, such as miR-122, miR-451a and miR-1246, have been previously reported as enriched in cell-culture derived EVs, likely due to the confounding effect of the FBS. Furthermore, although the absolute amount of individual RNA species in FBS is low, they can be taken up by cultured cells and affect the results and interpretations of highly sensitive gene expression profiling technologies. Therefore, precautions for experimental design are warranted to minimize the interference and misinterpretations caused by FBS-derived RNA.
Project description:We used male C57BL/6 mice (Charles River Laboratories, Wilmington, MA), housed under SPF conditions. Primary adipocytes from the inguinal fat depot at postnatal day (P6, young mice) and postnatal day 56 (P56, adult mice) were isolated by collagenase digestion and separation of cell fractions and subsequently cultured in EV-free media (FBS was EV-depleted). Article: Röszer T., MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles
Project description:Extracellular Vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, identification of EV and corresponding cell platform(s) suitable for therapeutic application, is still a challenge. Here, we isolated EV from key stages of the human induced pluripotent stem cell-cardiomyocyte (hiPSC-CM) differentiation and maturation, i.e., from hiPSC (hiPSC-EV), cardiac progenitors (CPC-EV), immature (CMi-EV) and mature (CMm-EV) cardiomyocytes, with the aim of identifying a promising cell biofactory for EV production, and pinpoint the genetic signatures of bioactive EV. EV were characterized in terms of expression of specific markers, yield, and size. Bioactivity was assessed in human umbilical vein endothelial cells (HUVEC) and hiPSC-CM. Small RNA-Seq was performed to identify the differentially expressed miRNA in the four EV groups. Bioactivity assays showed increased tube formation and migration in HUVEC treated with hiPSC-EV compared to EV from committed cell populations. hiPSC-EV also significantly increased hiPSC-CM proliferation. Global miRNA expression profiles corroborated an EV-miRNA pattern indicative of stem cell to cardiomyocyte specification. A stemness maintenance miRNA cluster upregulated in hiPSC-EV was found to target the PTEN/PI3K/AKT pathway. Moreover, hiPSC-EV treatment mediated PTEN suppression and increased AKT phosphorylation. Overall, our findings validate hiPSC as suitable cell biofactories for EV production for cardiac regenerative applications.
Project description:To screen for potential miRNA that may contribute to the etiopathogenesis of EDS-HT/JHS miRNA expression profiling was performed using the Affymetrix GeneChip® miRNA 3.0 Array and comparing the miRNA expression changes of skin fibroblasts of five EDS-HT/JHS patients with those of six healthy individuals
Project description:Purpose: The goals of this study are to compare the serum extracellular vesicle (EV) delivered miRNA levels of patients with bone-metastatic prostate cancer (PCa), non-bone -metastatic PCa and benign prostatic hyperplasia (BPH), and to identify EV-delivered microRNAs in patient’s serum as indicators for bone-metastatic PCa. Methods:Serum extracellular vesicle delivered miRNA profiles of patients with bone-metastatic PCa or non-bone -metastatic PCa or BPH were generated by deep sequencing, using Illumina HiSeqTM 2500 platform Results: Using an optimized data analysis method, we mapped about 17 million sequence reads per sample. Differential analysis showed the expressions of 35 EV delivered miRNAs were significantly different between serum of patients with PCa and BPH, with a p value <0.05. the expressions of 5 EV delivered miRNAs were confirmed with qRT–PCR. Conclusions: Serum EV-delivered miR-181a-5p is a promising diagnostic biomarker for bone-metastatic PCa.
Project description:To investigate the impact of a pro-inflammatory stimulus (TNFα and IFNγ, 20 ng/ml) on miRNA in SCAP-EV, we isolated EV from non-activated and activated SCAP and then extracted miRNA
Project description:Extracellular vesicles (EVs) are involved in intercellular communication in health and disease and affect processes including immune and antiviral responses. We have previously demonstrated that ultracentrifuged serum is depleted of EVs and, when used in cell culture media, is associated with declines in growth and viability of numerous cultured cell types. Although EVs had been reported to enhance or interfere with HIV-1 infection, depending on the setting, the effects of EVs on HIV-1 production and infectivity of released virions were unknown. In this study, we examined the effects of EV-depleted serum on HIV-1 replication in primary cells and cell lines, including two HIV-1 latency models. Cell culture media were prepared with EV-replete fetal bovine serum (FBS) or serum depleted of EVs via ultracentrifugation or a proprietary method (ThermoFisher/Gibco). T-cell and myeloid-lineage cell lines, including ACH-2 and U1 HIV-1 latency models, and primary cells were grown in 10% FBS-based culture media. Cell counts, viability, and proliferation were assessed throughout. HIV-1 production and infectivity were measured by p24 ELISA and luciferase reporter cell lines, respectively. Flow cytometry, Seahorse assays, and miRNA and mRNA expression arrays were done to assess cellular responses to EV-depleted conditions. Significant increases in HIV-1 production were observed in EV-depleted conditions, along with, in some cases, morphology changes and decreased cell viability. Add-back of pelleted EVs reduced HIV-1 production almost to baseline. Primary cells appeared to be less susceptible to EV depletion. ACH-2 and U1 latency models also produced more HIV-1 under EV-depleted conditions. Virus produced under EV-depleted conditions was more infectious. Changes in cellular metabolism and gene expression were associated with EV-depleted culture. The EV environment of HIV-1 infected cells appears to have a significant effect on virus production and infectivity. In cell lines of HIV-latency, significantly higher concentrations of p24 were observed in those cells cultured in EVD conditions. EV-dependence of cell cultures should be examined carefully prior to examining additional experimental variables. However, we also sound a cautionary note that direct actions of EVs may be accompanied by the effects of other, closely associated factors.