Project description:Omics approaches are broadly used to explore endocrine and toxicity-related pathways and functions. Nevertheless, there is still a significant gap in knowledge in terms of understanding the endocrine system and its numerous connections and intricate feedback loops, especially in non-model organisms. The fathead minnow (Pimephales promelas) is a widely used small fish model for aquatic toxicology and regulatory testing, particularly in North America. A draft genome has been published but the amount of available genomic or transcriptomic information is still far behind that of other more broadly studied species, such as the zebrafish. Here, we surveyed the tissue-specific proteome and transcriptome profiles in adult male fathead minnow. To do so, we generated a draft transcriptome using short and long sequencing reads. We also performed RNA sequencing and proteomics analysis on the telencephalon, hypothalamus, liver, and gut of male fish. The main purpose of this analysis was to generate tissue-specific omics data in order to support future aquatic ecotoxicogenomic and endocrine-related studies as well as to improve our understanding of the fathead minnow as an ecological model.
Project description:Characterization of the renal transcriptomic response to Yersinia ruckeri/Conseuqences of early life stage thyroid suppression on long-term immune function and the immune response in the fathead minnow (Pimephales promelas)
Project description:Interpretation of toxicogenomic experiments conducted with ovary tissue from asynchronous-spawning small fish species are complicated by background variation in the relative abundance and proportion of follicles at different stages within the ovary tissue sample. This study employed both real-time quantitative PCR and a 15,000 gene oligonucleotide microarray to examine variation in the fathead minnow (Pimephales promelas) ovarian transcriptional profile as a function of quantitative and qualitative differences in ovarian histology. Multiple lines of evidence supported the conclusion that variation in the transcriptional profile was primarily dependent on the relative abundance of previtellogenic versus vitellogenic follicles in the ovary tissue. Due to the relatively small proportions of mature ovulated follicles or atretic follicles in the overall follicle population, few putative molecular markers of maturation, ovulation, or atresia could be identified. However, among the 460 differentially expressed genes identified in the study, targets including HtrA serine peptidase 3 (htra3), tissue inhibitor of metalloproteinase 3 (timp3), aquaporin 8 (aqp8), transgelin 2 like (tagln2), Nedd4 family interacting protein 2 (ndfip2), chemokine ligand 12a (cxcl12a), midkine related growth factor (mdka), and jagged 1b (jag 1b) exhibited responses and functional properties that support them as candidate molecular markers of significant shift in gross ovarian stage. Overall, results of this study provide insights into background variation in ovary transcript profiles that should aid and enhance the interpretation of toxicogenomic data generated in experiments conducted with small, asynchronous spawning fish species. Relative abundance of approximately 15,000 RNA transcripts in 26 ovary samples and 4 expelled oocyte (egg) samples, representing the five different histoclasses defined for the present study, was evaluated using fathead minnow oligonucleotide microarrays. Fathead minnow 15,000 gene arrays were purchased from Agilent (Palo Alto, CA, USA). The Agilent one-color microarray hybridization protocol (One-Color Microarray-Based Gene Expression Analysis, version 5.7, Agilent Technologies, Palo Alto, CA) was used for microarray hybridizations following the manufacturerM-bM-^@M-^Ys protocol and recommendations. One ug of total RNA was used for all hybridizations. cDNA synthesis, cRNA labeling, amplification and hybridization were performed following the manufacturerM-bM-^@M-^Ys kits and protocols (Quick Amp Labeling kit; Agilent, Palo Alto, CA). An Axon GenePixM-BM-. 4000B Microarray Scanner (Molecular Devices Inc., city, state) was used to scan microarray images at 5 M-NM-<m resolution.
Project description:Interpretation of toxicogenomic experiments conducted with ovary tissue from asynchronous-spawning small fish species are complicated by background variation in the relative abundance and proportion of follicles at different stages within the ovary tissue sample. This study employed both real-time quantitative PCR and a 15,000 gene oligonucleotide microarray to examine variation in the fathead minnow (Pimephales promelas) ovarian transcriptional profile as a function of quantitative and qualitative differences in ovarian histology. Multiple lines of evidence supported the conclusion that variation in the transcriptional profile was primarily dependent on the relative abundance of previtellogenic versus vitellogenic follicles in the ovary tissue. Due to the relatively small proportions of mature ovulated follicles or atretic follicles in the overall follicle population, few putative molecular markers of maturation, ovulation, or atresia could be identified. However, among the 460 differentially expressed genes identified in the study, targets including HtrA serine peptidase 3 (htra3), tissue inhibitor of metalloproteinase 3 (timp3), aquaporin 8 (aqp8), transgelin 2 like (tagln2), Nedd4 family interacting protein 2 (ndfip2), chemokine ligand 12a (cxcl12a), midkine related growth factor (mdka), and jagged 1b (jag 1b) exhibited responses and functional properties that support them as candidate molecular markers of significant shift in gross ovarian stage. Overall, results of this study provide insights into background variation in ovary transcript profiles that should aid and enhance the interpretation of toxicogenomic data generated in experiments conducted with small, asynchronous spawning fish species.
Project description:Production, usage and disposal of the munitions constituent (MC) cyclotrimethylenetrinitramine (RDX) has led to environmental releases on military facilities. The chemical attributes of RDX are conducive for leaching to surface water which may put aquatic organisms at risk of exposure. Because RDX has been observed to cause aberrant neuromuscular effects across a wide range of animal phyla, we assessed the effects of RDX on central nervous system (CNS) function in the representative aquatic ecotoxicological model species, fathead minnow (Pimephales promelas). A brain-tissue based cDNA library enriched for transcripts differentially expressed in response to RDX exposure was developed for fathead minnow and was transitioned to custom cDNA-based microarrays. All 4,128 cDNAs were sequenced, quality filtered and assembled yielding 3,018 unique sequences and 945 significant blastx matches (E ≤ 10-5). Bioassays were conducted exposing fathead minnows to RDX at 0.625, 1.25, 2.5, 5, 10 mg/L or an acetone-spike control for 10d. Overt toxicity of RDX in fathead minnow occurred only at the highest exposure concentration resulting in 50% mortality. Conversely, Bayesian analysis of microarray data indicated significant changes in transcript expression in fathead minnow brain tissue at RDX concentrations as low as 0.625 mg/L. In total, 154 microarray targets representing 44 unique transcript identities were differentially expressed in RDX exposures, the majority of which were validated by RT-qPCR. Investigation of molecular pathways, gene ontology and individual gene functions indicated that RDX exposures affected metabolic processes involved in: oxygen transport, neurological function, calcium binding / signaling, energy metabolism, cell cycle / cell proliferation, oxidative stress and ubiquitination. In total, our study indicated that RDX exposure affected molecular processes critical to CNS function in fathead minnow.
Project description:The ureic-based herbicide linuron and the model anti-androgen flutamide regulate common gene networks in the fathead minnow (Pimephales promelas) ovary