Project description:Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) strains and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence data. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB (HR-MTB), 7 were resistant only to one antibiotic (3 were resistant only to ethambutol and 3 isolate to streptomycin while one isolate showed resistance to fluoroquinolones), 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB (pre-XDR). This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of TB infection.
Project description:The emergence of drug resistance among tuberculosis (TB) patients is often associated with their non-compliance to the length of the chemotherapy, which can reach up to 2 years for the treatment of multi-drug-resistant (MDR) TB. Drugs that would kill TB faster and would not lead to the development of drug resistance could shorten chemotherapy significantly. In Escherichia coli, the common mechanism of cell death by bactericidal antibiotics is the generation of highly reactive hydroxyl radicals via the Fenton reaction. Since ascorbic acid (vitamin C) is known to drive the Fenton reaction, we tested whether the Fenton reaction could lead to a bactericidal event in Mycobacterium tuberculosis by treating M. tuberculosis cultures with vitamin C. Here, we report that the addition of vitamin C to drug-susceptible, MDR and extensively drug-resistant (XDR) M. tuberculosis strains results in sterilization of the cultures in vitro. We show that the sterilizing effect of vitamin C on M. tuberculosis was dependent on the production of high ferrous ion levels and reactive oxygen species. Although, this potent sterilizing activity of vitamin C against M. tuberculosis in vitro was not observed in mice, we believe this activity needs further investigation. Comparison of vitamin C treated Mycobacterium tuberculosis transcriptome relative to untreated; Three biological replicates, second is a dye flip
Project description:The emergence of drug resistance among tuberculosis (TB) patients is often associated with their non-compliance to the length of the chemotherapy, which can reach up to 2 years for the treatment of multi-drug-resistant (MDR) TB. Drugs that would kill TB faster and would not lead to the development of drug resistance could shorten chemotherapy significantly. In Escherichia coli, the common mechanism of cell death by bactericidal antibiotics is the generation of highly reactive hydroxyl radicals via the Fenton reaction. Since ascorbic acid (vitamin C) is known to drive the Fenton reaction, we tested whether the Fenton reaction could lead to a bactericidal event in Mycobacterium tuberculosis by treating M. tuberculosis cultures with vitamin C. Here, we report that the addition of vitamin C to drug-susceptible, MDR and extensively drug-resistant (XDR) M. tuberculosis strains results in sterilization of the cultures in vitro. We show that the sterilizing effect of vitamin C on M. tuberculosis was dependent on the production of high ferrous ion levels and reactive oxygen species. Although, this potent sterilizing activity of vitamin C against M. tuberculosis in vitro was not observed in mice, we believe this activity needs further investigation.
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:The human pathogen, Mycobacterium tuberculosis, develops a dormant infection, in which organisms survive within the body. We established a unique in vitro dormancy model based on the characterization of drug-resistance to INH and rifampin. M. tuberculosis cells were maintained in controlled and defined multiple stress conditions with low oxygen (5% dissolved oxygen tension), acid (pH 5.) along with glycerol-deprived medium conditions. To monitor gene expression changes in M. tuberculosis in response to the multiple stresses, we performed microarray analysis at the time point of 1, 2, 3, 6, and 12days after treatment. M. tuberculosis adapting to multiple stresses displayed characteristics associated with persistence in vivo, including entry into a non-replicative state and the repression of genes involved in energy regeneration. Under in vitro multiple-stresses, M. tuberculosis significantly modulated gene expression mainly in response to the starvation stresses. Cells exposed to these multiple stress conditions shows significant drug-resistance. Comparison with other in vivo expression profiles demonstrates induction of several common genes for in vitro dormancy conditions. Keywords: Stress response in time course.