Project description:Inflammatory bowel disease (IBD) is a multiple-genes-involved chronic disease and current available targeted drugs for IBD only deliver moderate efficacy. Whether there is a single gene that systematically regulates IBD is not yet known. Here we showed that the expression of miR-146a in colon was elevated in Dextran Sulfate Sodium Salt (DSS)-induced IBD mice and patients with IBD. DSS induced dramatic body weight loss and much more rectal bleeding, shorter colon length and colitis in miR-146a knock-out mice than wild type (WT) mice. The miR-146a mimics alleviated DSS-induced symptoms in both DSS-induced miR-146a-/- and WT mice. Further RNA sequencing illustrated that deficiency of miR-146a de-repressed majority of DSS-induced IBD-related genes which cover multiple genetic regulatory networks in IBD, and supplement of miR-146a mimics inhibited expression of many IBD-related genes. DOI 10.3389/fimmu.2024.1366319
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD. miRNAs expression was accesed for acute and chronic murine model of colitis induced by DSS or TNBS.Total of 20 samples with duplicates were analyed in this study.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD. miRNAs expression was accesed for acute and chronic murine model of colitis induced by DSS or TNBS.Total of 20 samples with duplicates were analyed in this study.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD.
Project description:Colonic gene expression profiles of mice with DSS-induced colitis treated with apple peel polyphenolic extract Four-condition experiment: control, DSS-induced colitis, and mice treated with DAPP (two different doses (200 and 400 mg/kg/day) before or during induction and development of DSS-induced colitis.
Project description:Background: MicroRNAs (miRNAs) acting as negative regulators of gene expression are differentially expressed in intestinal tissues of patients with inflammatory bowel disease (IBD). Assessing the functional role of miRNAs in murine models of colitis facilitates elucidating the role of specific miRNAs in human IBD. The aim of this study was to determine the miRNA signature of murine models of colitis and to assess the influence of miR-21 on intestinal inflammation. Methods: miRNAs expression was accessed by microarray for acute and chronic murine model of colitis induced by DSS or TNBS. miR-21-deficient mouse and littermates controls were assessed in the standard DSS, TNBS and CD4+ T cell transfer models of colitis. RNAs of mouse colon and CD4+CD45RBHigh cells were analyzed by miRNA and mRNA microarray, and quantitative RT-PCR. Th1 polarization was accessed by flow-cytometry and ELISA. Results: Alterations of in miRNAs expression were identified for acute and chronic DSS colitis and TNBS colitis, receptively. The Expression of miRs-21, -142-3p and -223 was were distinct between DSS and TNBS models while overlap of numerous miRNAs was seen. Importantly, miRs-19b, -192 and -215, that are decreased in IBD, were significantly decreased in all 4 models of colitis. miR-21, which is increased in IBD, was increased in TNBS colitis but not the DSS colitis models. Further assessment of the miR-21-deficient 1-/- mice revealed that the deletion of miR-21 results in the exacerbation of both the TNBS and T cell-transfer models of colitis. Conclusions: miRNAs are differentially expressed in both human IBD and murine colitis, with overlap of several IBD-associated miRNAs. The demonstration that miR-21 deletion exacerbated CD4+ T cell-mediated models of colitis provides further evidence that miRNAs play significant roles in the pathogenesis of IBD. Gene expression profiles were established for normal miR-21-/- mice and wild type c57BL/6 mice (WT). Total of 6 samples with replicates were included in this study.
Project description:Temporal genome profiling of DSS colitis The DSS induced mouse colitis model is often used to emulate Ulcerative Colitis (UC) in order understand pathophysiological mechanism of inflammatory bowel disease (IBD). Given the progressive nature of IBD, colon tissue gene expression changes during the evolution of disease, and knowing the changes in gene expression profiles could indentify potential diagnostic markers or additional therapeutic targets for colitis. Therefore, we performed temporal genome expression profiling analysis using the Affymetrix genome wide microarray system to identify broad scale changes in gene expression associated with the development of colitis. Keywords: Expression time course of mouse colon tissue induced by 3% DSS. C57BL/6J mice were given 3% DSS in the drinking water and tissues from individual cohorts were collected at days 0, 2, 4 and 6. Total RNA were extracted from the colon tissue and detected by Affymerix GeneChip Mouse Genome 430 2.0 Array.