Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.
Project description:Objective Estrogen-related-receptor α (ERRα) plays a critical role in the transcriptional regulation of cellular bioenergetics and metabolism, and perturbations in its activity have been associated with metabolic diseases. While several coactivators and corepressors of ERRα have been identified to date, a knowledge gap remains in understanding the extent to which ERRα cooperates with coregulators in the control of gene expression. Herein, we mapped the primary chromatin-bound ERRα interactome in mouse liver. Methods RIME (Rapid Immuno-precipitation Mass spectrometry of Endogenous proteins) analysis using mouse liver samples from two circadian time points was used to catalog ERRα-interacting proteins on chromatin. The genomic crosstalk between ERRα and its identified cofactors in the transcriptional control of precise gene programs was explored through cross-examination of genome-wide binding profiles from chromatin immunoprecipitation-sequencing (ChIP-seq) studies. The dynamic interplay between ERRα and its newly uncovered cofactor Host cell factor C1 (HCFC1) was further investigated by loss-of-function studies in hepatocytes. Results Characterization of the hepatic ERRα chromatin interactome led to the identification of 48 transcriptional interactors of which 42 were previously unknown including HCFC1. Interrogation of available ChIP-seq binding profiles highlighted oxidative phosphorylation (OXPHOS) under the control of a complex regulatory network between ERRα and multiple cofactors. While ERRα and HCFC1 were found to bind to a large set of common genes, only a small fraction showed their co-localization, found predominately near the transcriptional start sites of genes particularly enriched for components of the mitochondrial respiratory chain. Knockdown studies demonstrated inverse regulatory actions of ERRα and HCFC1 on OXPHOS gene expression ultimately dictating the impact of their loss-of-function on mitochondrial respiration. Conclusions Our work unveils a repertoire of previously unknown transcriptional partners of ERRα comprised of chromatin modifiers and transcription factors thus advancing our knowledge of how ERRα regulates metabolic transcriptional programs.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.