Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:We have used the budding yeast Saccharomyces cerevisiae to identify genes that may confer sensitivity in vivo to the antimalarial and cytotoxic agent cryptolepine. To this end, five S. cerevisiae strains, which differ in the condition of genes related to cell membrane integrity and to DNA damage repair, were exposed to several concentrations of cryptolepine. Results showed a relatively mild toxicity of cryptolepine for wild type strains, which increased by either increasing cell permeability (∆erg6 or ISE2 strains) or disrupting DNA damage repair (∆rad52 strains). These results are compatible with the ability of cryptolepine to intercalate into DNA and therefore, promote DNA lesions. The effects of low concentrations of cryptolepine (IC20 and IC40) were then analysed by comparison between gene expression profiles of treated and untreated ∆erg6 yeast cells. Significant changes in expression levels were observed for 349 genes (117 up-regulated and 232 down-regulated). General stress-related genes constituted the only recognizable functional cluster whose expression was increased upon cryptolepine treatment, making up about 20% of up-regulated genes. In contrast, analysis of characteristics of down-regulated genes revealed a specific effect of cryptolepine on genes related to iron-transport or acid phosphatases, as well as a significant proportion of cell wall components. In particular, the effects of cryptolepine treatment on transcription of iron transport-related genes were compatible with of a loss-of-function of the iron sensor Aft1p, indicating a possible disruption of the iron metabolism is S. cerevisiae. As iron metabolism is one of the putative antimalarial effects of cryptolepine, this finding exemplarises the utility of S. cerevisiae in drug-developing schemes. These results are analyzed in the context of the known cryptolepine activities as antimalarial and cytotoxic drug.
Project description:To characterize cellular response to the anti-cancer ruthinium complex KP1019, budding yeast Saccharomyces cerevisiae transcripitonal response to KP1019 was measured using microarray analysis. Although KP1019 molecular mechanism of action remains a matter of debate, the drug has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to characterize KP1019 induced transcriptional changes. Two concentrations of KP1019 (40 micrograms/mL and 80 micrograms/ml were assayed by microarray analysis to obtain comparative expression data for treated and untreated cells of the budding yeast Saccharomyces cerevisiae (strain BY4741). Two biological replicates of each concentration were done. Each biological replicate was done in duplicate to allow for dye reversal controls.
Project description:To characterize cellular response to the anti-cancer ruthinium complex KP1019, budding yeast Saccharomyces cerevisiae transcripitonal response to KP1019 was measured using microarray analysis. Although KP1019 molecular mechanism of action remains a matter of debate, the drug has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to characterize KP1019 induced transcriptional changes.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.