Project description:We analyzed the miRNA expression in 6 breast cancer cell lines from young (HCC1500, HCC1937) and old (MCF-7, MDA-MB-231, HCC1806 and MDA-MB-468) patients with breast cancer using the GeneChip® miRNA 2.0 Array (Affymetrix, Santa Clara, CA, USA).
Project description:Immortalized human breast cancer cell line, HCC1806, was analyzed via RT-qPCR for transcript expression of selected cytokines and cytokine receptors associated with promotion of tumor vasculature and breast cancer metastasis
Project description:Three triple negative breast cancer cell lines (MDAMB231, SUM159, and HCC1806) were treated with small molecule inhibitors (JQ1, BET bromodomain inhibitor; GSK2801, BAZ2A/B bromodomain inhibitor) or BAZ siRNA alone and in combination with JQ1 for 48 hours
Project description:The human HCC1806 cell line is frequently used as a preclinical model for triple negative breast cancer (TNBC). Given that dysregulated epigenetic mechanisms are involved in cancer pathogenesis, emerging therapeutic strategies target chromatin regulators, such as histone deacetylases. A comprehensive understanding of the epigenome and transcription profiling in HCC1806 provides the framework for evaluating efficacy and molecular mechanisms of epigenetic therapies. Thus, to study the interplay of transcription and chromatin in the HCC1806 preclinical model, we performed nascent transcription profiling using Precision Run-On coupled to sequencing (PRO-seq). Additionally, we mapped the genome-wide locations for RNA polymerase II (Pol II), CTCF, the histone variant H2A.Z, and 7 histone modifications using ChIP-exo. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq with near base pair precision mapping of protein-DNA interactions. In this Data Descriptor, we present detailed information on experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the nascent transcription and chromatin.
Project description:Three triple negative breast cancer cell lines (MDAMB231, SUM159, and HCC1806) were treated with small molecule inhibitors (JQ1, BET bromodomain inhibitor; GSK2801, BAZ2A/B bromodomain inhibitor) alone and in combination for 72 hours
Project description:The mechanisms behind drug resistance and sensitivity in breast cancers relies on complex signalling pathways that involve the up or downregulation of certain genes. Many of these genes are involved in adhesion, growth, epithelial/mesenchymal transitions, and apoptosis. We used microarrays to assess differences in gene expression in triple-negative breast cancer cells in response to treatment. We examined the triple-negative human cell line HCC1806 treated with docetaxel or control DMSO. The purpose is to find out the early drug induced changes in this cell line.
Project description:We discovered that the RNA helicase DHX15 is a regulator of the methyltransferase CMTR1. To determine the biological consequences of this interaction we overexpressed CMTR1 or a mutated CMTR1 (2LA)that does not bind DHX15, in the human breast cancer cell line HCC1806. To assess the effects of the DHX15-CMTR1 interaction on translation, polysomes were separated on a sucrose gradient and sequencing libraries generated from the polysomal and input RNA. We found that the DHX15-CMTR1 interaction controls ribosome loading of a subset of mRNAs and impacts on cell proliferation.
Project description:The analysis identifies differentially occupied genomic regions of H2Bub1, H3K79me3, and H3K27ac by RNF40 silencing in HCC1806 cells
Project description:A high percentage of potential oncology drugs fail in clinical trials, partly because preclinical models used to test them are inadequate. Breast cancer is the leading cause of cancer-related death among women worldwide but we lack appropriate in vivo models for the ER+ subtypes, which represent more than 75% of all cases. We address these issues by xenografting tumor cells to their site of origin, the milk ducts. All ER+ cell lines and patient-derived xenografts grow mimicking their clinical counterparts. Disease progresses with invasion and metastasis, which become amenable to study. The action of hormones, important in breast carcinogenesis, can now be studied in a relevant context. Importantly, these open opportunities for development and evaluation of therapies. Eight- to twelve-week-old female SCID Beige mice (Charles River) were injected with 5x10e5 BT20-GFP/luc2 cells (n=3) or 5x10e5 HCC1806-GFP/luc2 cells (n=3) either into the mammary fat pad or 2x10e5 BT20-GFP/luc2 cells (n=3) or 2x10e5 HCC1806-GFP/luc2 cells intraductally (n=3). Xenografted BT20 and HCC1806 basal breast cancer cells were sorted by FACS based on GFP expression; total RNA was extracted using Trizol Reagent (Invitrogen), purified with the miRNeasy Mini Kit (Qiagen), quantity and quality were assessed by NanoDrop®ND-1000 spectrophotometer and RNA 6000 NanoChips with the Agilent 2100 Bioanalyzer (Agilent, Palo Alto, USA). Only samples with RIN score >7.0 were included. For each sample, 300 ng of total RNA were amplified using the message amp II enhanced kit (AM1791, Ambion). 12.5 μg of biotin-labelled cRNA were chemically fragmented. Affymetrix GeneChip Human Genome U133A 2.0 Arrays (Affymetrix, Santa Clara, CA, USA) were hybridized with 11μg of fragmented target, at 45°C for 17 hours, washed and stained according to Affymetrix GeneChip® Expression Analysis Manual (Fluidics protocol FS450_0007). Arrays were scanned using the GeneChip® Scanner 3000 7G (Affymetrix) and raw data was extracted from the scanned images and analyzed with the Affymetrix Power Tools software package (Affymetrix). All statistical analyses were performed using R and Bioconductor packages (http://www.Bioconductor.org). Hybridization quality was assessed using the Expression Console software (Affymetrix). Normalized expression signals were calculated from Affymetrix CEL files using RMA. Differential hybridized features were identified using Bioconductor package â??limmaâ?? that implements linear models for microarray data (Smyth, 2004). P values were adjusted for multiple testing with Benjamini and Hochbergâ??s method to control false discovery rate (FDR) (Benjamini et al., 2001). Probe sets showing â?¥2-fold change and a FDR â?¤0.05 were considered significant.
Project description:Breast cancer (BC) is the second most common type of cancer in women and one of the leading causes of cancer-related deaths worldwide. BC classification is based on the detection of three main histological markers: estrogen receptor alpha (ERα), progesterone receptor (PR) and the amplification of epidermal growth factor receptor 2 (HER2/neu). A specific BC subtype, named triple-negative BC (TNBC), lacks the aforementioned markers but a fraction of them express the estrogen receptor beta (ERβ). To investigate the functional role of ERβ in these tumors, interaction proteomics coupled to mass spectrometry (MS) was applied to deeply characterize the nuclear interactors partners in MDA-MD-468 and HCC1806 TNBC cells.