Project description:Adeno-associated viruses (AAVs) have emerged as the foremost gene therapy delivery vehicles due to their versatility, durability and safety profile. Here we demonstrate extensive chimerism among complex AAV libraries that are packaged as a pool. The observed chimerism is length- and homology-dependent but capsid-independent, in some cases affecting >60% of packaged AAV genomes. These results have important implications for the design and deployment of functional AAV libraries in research and clinical settings.
Project description:Adeno-associated viral vectors (AAV) are a leading delivery system for gene therapy in animal models and humans. With several FDA-approved AAV gene therapies on the market, issues related to vector manufacturing have become increasingly important. In this study, we focused on potentially toxic DNA contaminants that can arise from AAV proviral plasmids, the raw materials required for manufacturing recombinant AAV in eukaryotic cells. Typical AAV proviral plasmids are circular DNAs containing a therapeutic gene cassette flanked by natural AAV inverted terminal repeat (ITR) sequences, and a plasmid backbone carrying prokaryotic sequences required for plasmid replication and selection in bacteria. While the majority of AAV particles package the intended therapeutic payload, some capsids instead package the bacterial sequences located on the proviral plasmid backbone. Since ITR sequences also have promoter activity, potentially toxic bacterial open reading frames can be produced in vivo, thereby representing a safety risk. In this study, we describe a new AAV proviral plasmid for vector manufacturing that (1) significantly decreases cross-packaged bacterial sequences; (2) increases correctly packaged AAV payloads; and (3) blunts ITR-driven transcription of cross-packaged material to avoid expressing potentially toxic bacterial sequences. This system may help improve the safety of AAV vector products.
Project description:Adeno-associated viral vectors (AAV) are a leading delivery system for gene therapy in animal models and humans. With several FDA-approved AAV gene therapies on the market, issues related to vector manufacturing have become increasingly important. In this study, we focused on potentially toxic DNA contaminants that can arise from AAV proviral plasmids, the raw materials required for manufacturing recombinant AAV in eukaryotic cells. Typical AAV proviral plasmids are circular DNAs containing a therapeutic gene cassette flanked by natural AAV inverted terminal repeat (ITR) sequences, and a plasmid backbone carrying prokaryotic sequences required for plasmid replication and selection in bacteria. While the majority of AAV particles package the intended therapeutic payload, some capsids instead package the bacterial sequences located on the proviral plasmid backbone. Since ITR sequences also have promoter activity, potentially toxic bacterial open reading frames can be produced in vivo, thereby representing a safety risk. In this study, we describe a new AAV proviral plasmid for vector manufacturing that (1) significantly decreases cross-packaged bacterial sequences; (2) increases correctly packaged AAV payloads; and (3) blunts ITR-driven transcription of cross-packaged material to avoid expressing potentially toxic bacterial sequences. This system may help improve the safety of AAV vector products.
Project description:Two independent ES cell lines (D4 and C2) were assessed for chimerism and germline transmission. Although these lines were able to produce chimerism at early passage, no germ line transmission was seen. After passaging in a proprietary medium and subcloning by detaching loosely connected cells and culturing in the recommended medium, both lines experienced an increase in potential as evidenced by an enhanced ability to go germ line. Analysis of early passage, and late passage detached and attached cells will allow the determination of genes that may be implicated in the increase of potential seen in these cells. Note: additional replicates may be added at a later date. Keywords: embryonic stem cells, chimerism, germline transmission
Project description:Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Non-toxic delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knock-in efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knock-ins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR/Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables pre-clinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens new avenues in experimental T cell immunology.
Project description:This is an ATAC sequencing experiment to explore chromatin accessibility change in mouse skeletal muscle treated with either AAV-GFP or AAV-CAAHR (a constitutively active mutant aryl hydrocarbon receptor). Mice received intramuscular injection of the AAV 5 months before the harvest of muscle.