Project description:Wastewater treatment plants (WWTPs) and Drinking water treatment plants (DWTPs) are critical points for public health for persistently remaining microorganisms after treatment may pose a risk. This study aimed to conduct microbial metagenomic analyses on waters from both DWTPs and WWTPs under the Istanbul Water and Sewerage Administration (ISKI). In this study a total of 52 samples were included, comprising 18 samples from DWTPs and 34 from WWTPs. All water samples underwent pre-isolation filtration. DNA isolation was conducted using filter material, followed by library preparation and sequencing on a NovaSeq 6000 instrument following the manufacturer's guidelines.
Project description:The seasonal out-of-limit of manganese ions (Mn2+) in the drinking water reservoirs is an intractable problem to water supply, which can pose a threat to the human health. In this study, the removal of Mn2+ by using pristine (BC), pre-alkali (Pre-BC) and post-alkali (Post-BC) modified biochar originating from rice straw was investigated. The maximum adsorption capacities obtained for BC, Pre-BC, and Post-BC were 20.59, 28.37, and 8.06 mg g-1, respectively. The Langmuir isotherm model and the pseudo-second-order kinetic model were suitable fitting models to describe the adsorption process. The investigation of adsorption functions was carried out that revealed that the predominant forces were precipitation and cation exchange with the proportions of 43.38-69.15% and 38.05-55.79%, respectively. With regard to precipitation, Mn(ii) particles (Al-Si-O-Mn and MnCO3) and insignificantly oxidized insoluble Mn(iv) particles (MnO2) were formed on the biochar surface. Alkali and alkaline earth metals facilitated the behavior of cation exchange, where the primary contributing ions for cation exchange were Na+, Mg2+ and Ca2+ during the adsorption process. These outcomes suggest that alkali pre-treated modification of biochar is practical for the application of manganese pollution control in lakes and reservoirs.
Project description:Cadmium contamination in waters and soils can lead to food chain accumulation and ultimately deterioration in human health; means for reducing bioavailable Cd are desperately required, and biochars may play a role. Long-term (240 d) lab incubation experiments were utilized to explain wheat straw-derived biochar effects on Cd sorption and decreasing Cd bioavailability in soils and solutions (0, 5, and 15% biochar as wt:wt or wt:vol, respectively), and to identify Cd forms present using both the European Community Bureau of Reference (BCR) chemical sequential extraction procedure and synchrotron-based X-ray absorption spectroscopy (XAS). Biochar Cd removal was up to ~90% from Cd-containing solutions and contaminated soil as compared to the control. Based on the wet chemical sequential extraction procedure in conjunction with XAS, biochar application promoted the formation of (oxy)hydroxide, carbonate, and organically bound Cd phases. As a material, biochar may be promoted as a tool for reducing and removing bioavailable Cd from contaminated waters and soils. Thus, biochar may play a role in reducing Cd bioaccumulation, trophic transfer, and improving environmental quality and human health.
Project description:The utilization of high-efficiency adsorption materials to reduce cadmium pollution in aquatic environments is the focus of current environmental remediation research. Straw waste and sludge, which are available in huge amounts, can be best utilized in the preparation of environmental remediation materials. In this study, six types of biochar (SBC, CBC, DBC, SD1BC, SRDBC, and SCDBC) were prepared from straw and sludge by co-pyrolysis, and their cadmium adsorption mechanisms were explored. Cd(II) adsorption isotherms and kinetics on the biochar were determined and fitted to different models. Kinetic modeling was used to characterize the Cd(II) adsorption of biochar, and findings revealed the process of sorption followed pseudo-second-order kinetics (R2 > 0.96). The Langmuir model accurately represented the isotherms of adsorption, indicating that the process was monolayer and controlled by chemical adsorption. SCDBC had the highest capacity for Cd(II) adsorption (72.2 mg g-1), 1.5 times greater than that of sludge biochar, and 3 times greater than that of corn straw biochar. As the pH level rose within the range of pH 5.0 to 7.0 and the ionic strength decreased, the adsorption capacity experienced an increase. SCDBC contained CaCO3 mineral crystals before Cd(II) adsorption, and CdCO3 was found in SCDBC after adsorbing Cd(II) via X-ray diffraction analysis; the peak of Cd could be observed by Fourier transform infrared spectroscopy after the adsorption of Cd(II). The possible adsorption of Cd(II) by SCDBC occurred primarily via surface complexation with active sorption sites, precipitation with inorganic anions, and coordination with π electrons. Collectively, the study suggested that the six types of biochar, particularly SCDBC, could be used as highly efficient adsorbents for Cd(II) removal from aquatic environments.
Project description:We present metaproteome data from wheat rhizosphere from saline and non-saline soil. For collection and acquisition of metaproteome from wheat rhizosphere under saline and normal conditions, a survey was conducted in regions of Haryana, India. Samples from 65 days old plants (wheat var HD2967) were collected and pooled and based on EC,saline (NBAIM B; EC 6mS cm-1; pH 9.0; Bhaupur 2, Haryana, INDIA; 29°19'8"N;76°48'53"E) and normal soil samples (NBAIM C; EC 200 uS cm-1; pH 7.2; Near Nainform, Haryana, INDIA; 29°19'8"N;76°48'53"E) were selected for isolation of proteome with the standardized protocol at our laboratory followed by metaproteome analysis with the standardized pipepline. In total 1538 and 891 proteins were obtained from wheat rhizosphere from saline and non-saline respectively with the given parameters and software. Among 1410 proteins unique for saline soil, proteins responsible for glycine, serine and threonine metabolism and arginine and proline biosynthesis were found in saline and absent in non-saline. The present study extends knowledge about the physiology and adaptations of the wheat rhizosphere associated microbiota under saline soil.
Project description:The objective of this study is to verify the feasibility of using biochar made from crop straw as a bitumen additive to improve some properties of bitumen. The differences between crop straw biochar prepared in a laboratory and commercial charcoal were investigated through scanning electron microscopy and laser particle size analyses. Furthermore, biochar-modified asphalt was prepared using the high-speed shear method, and the penetration, softening point, ductility at 15°C, and apparent viscosity of the asphalt binder with 6% biochar were measured at 120, 135, 150, 160, and 175°C. It was found that both the crop straw biochar and the commercial charcoal consist mainly of C, O, Si, and K, but the C content of crop straw biochar is slightly higher than that of commercial charcoal. The particle size of biochar is smaller than that of commercial charcoal, while the specific surface area is larger. It was determined that the addition of crop straw biochar significantly improved the high-temperature performance of asphalt, and that biochar and commercial charcoal have a similar influence on the high temperature performance of asphalt.
Project description:Microbial decomposition plays a crucial role in the incorporation of straw and straw biochar (SSB) into soil. Lime concretion black soil (LCBS) is a typical low-medium crop yield soil, and it is also one of the main soil types for grain production in China. However, the link between SSB additions and soil bacterial communities in LCBS remains unclear. This study explored the effects of SSB incorporation on bacterial community composition, structure and co-occurrence network patterns at different soil depths and maize growth stages. The results showed that soil PH, soil organic matter and total nitrogen significantly affected the seasonality and stratification of the soil bacterial community. The composition and diversity of bacterial communities were significantly affected by growth period and treatment rather than soil depth. Specifically, the bacterial community diversity increased significantly with crop growth at 0-20 cm, decreased the relative abundance of Actinobacteria, and increased the relative abundance of Proteobacteria and Acidobacteria. SF (straw with fertilizer) and BF (straw biochar with fertilizer) treatments decreased bacterial community diversity. Co-occurrence networks are more complex in BF, S (straw), and SF treatments, and the number of edge network patterns is increased by 92.5, 40, and 60% at the maturity stage compared with F (fertilizer) treatment, respectively. Moreover, the positive effect of straw biochar on the bacterial network pattern increased with time, while the effect of straw weakened. Notably, we found that rare species inside keystone taxa (Gemmatimonadetes and Nitrospirae) play an indispensable role in maintaining bacterial network construction in LCBS. This study offers a comprehensive understanding of the response of soil bacterial communities to SSB addition in LCBS areas, and provides a reference for further improvement of LCBS productivity.
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
Project description:Biochar activation methods have attracted extensive attention due to their great role in improving sorptive properties of carbon-based materials. As a result, chemically modified biochars gained application potential in the purification of soil and water from xenobiotics. This paper describes changes in selected physicochemical properties of high-temperature wheat-straw biochar (BC) upon its deashing. On the pristine and chemically activated biochar (BCd) retention of five pesticides of endocrine disrupting activity (carbaryl, carbofuran, 2,4-D, MCPA and metolachlor) was studied. Deashing resulted in increased sorbent aromaticity and abundance in surface hydroxyl groups. BCd exhibited more developed meso- and microporosity and nearly triple the surface area of BC. Hydrophobic pesticides (metolachlor and carbamates) displayed comparably high (88-98%) and irreversible adsorption on both BCs, due to the pore filling, whereas the hydrophilic and ionic phenoxyacetic acids were weakly and reversibly sorbed on BC (7.3 and 39% of 2,4-D and MCPA dose introduced). Their removal from solution and hence retention on the deashed biochar was nearly total, due to the increased sorbent surface area and interactions of the agrochemicals with unclogged OH groups. The modified biochar has the potential to serve as a superabsorbent, immobilizing organic pollutant of diverse hydrophobicity from water and soil solution.
Project description:Chloroquine phosphate (CQP) is effective in treating coronavirus disease 2019 (COVID-19); thus, its usage is rapidly increasing, which may pose a potential hazard to the environment and living organisms. However, there are limited findings on the removal of CQP in water. Herein, iron and magnesium co-modified rape straw biochar (Fe/Mg-RSB) was prepared to remove CQP from the aqueous solution. The results showed that Fe and Mg co-modification enhanced the adsorption efficiency of rape straw biochar (RSB) for CQP with the maximum adsorption capacity of 42.93 mg/g (at 308 K), which was about two times higher than that of RSB. The adsorption kinetics and isotherms analysis, as well as the physicochemical characterization analysis, demonstrated that the adsorption of CQP onto Fe/Mg-RSB was caused by the synergistic effect of pore filling, π-π interaction, hydrogen bonding, surface complexation, and electrostatic interaction. In addition, although solution pH and ionic strength affected the adsorption performance of CQP, Fe/Mg-RSB still had a high adsorption capability for CQP. Column adsorption experiments revealed that the Yoon-Nelson model better described the dynamic adsorption behavior of Fe/Mg-RSB. Furthermore, Fe/Mg-RSB had the potential for repeated use. Therefore, Fe and Mg co-modified biochar could be used for the remediation of CQP from contaminated water.