Project description:Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honeybee health worldwide. The present study investigates the transcriptional response of this Gram-positive, endospore-forming bacterium to bodily fluids from honeybee larvae. Four different conditions were evaluated with a loop design: sampling of in vitro grown P. larvae cultures one or four hours after addition of larval fluids or BHIT-broth (C1, T1, C4, T4).
Project description:Regulatory T cells (Tregs) are known to maintain survival and suppressive function in the presence of high levels of extracellular lactic acid. However, the effect of lactic acid on Treg induction is not known. We therfore evaluated the effect of lactic acid on Treg induction and observed an increased induction of Tregs in the presence of lactic acid. This increase occurred in a glycolysis-independent, acidity-dependent manner.
Project description:D-lactic acid is a three-carbon organic acid with a chiral structure and can improve the thermostability of polylactic acid. Microorganisms such as the methylotrophic yeast Pichia pastoris, which lack the natural ability to produce or accumulate high amounts of D-lactic acid, have been engineered to produce it in high titers. However, tolerance to D-lactic acid remains a challenge. In this study, we demonstrate that cell flocculation improves tolerance to D-lactic acid and leads to increased D-lactic acid production in Pichia pastoris. By incorporating a flocculation gene from Saccharomyces cerevisiae (ScFLO1) into P. pastoris KM71, we created a strain (KM71-ScFlo1) that demonstrated up to a 1.6-fold improvement in specific growth rate at high D-lactic acid concentrations. Furthermore, integrating a D-lactate dehydrogenase gene from Leuconostoc pseudomesenteroides (LpDLDH) into KM71-ScFlo1 resulted in an engineered strain (KM71-ScFlo1-LpDLDH) that can produce D-lactic acid at a titer of 5.12 0.35 g/L in 48 hours , a 2.6-fold improvement over the control strain lacking ScFLO1 expression. Transcriptomics analysis of this strain provided insights into the mechanism of increased tolerance to D-lactic acid including the upregulations of genes involved in lactate transport and iron metabolism. Overall, our work represents an advancement in the efficient microbial production of D-lactic acid by manipulating yeast flocculation.
Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. The differential feeding regime experienced by the queen and the worker larvae of the honeybee Apis mellifera shapes a complex endocrine response cascade that ultimately sets up differences in brain morphologies. Herein we report on aspects of brain morphogenesis during larval development and the brain gene expression signature of fourth instar larvae (L4) of both castes, a developmental stage characterized by the greatest differences in juvenile hormone (JH) titers between castes Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from brain of fourth instar larvae honeybees of both castes we present a list of differentially expressed genes.
Project description:Epigenetic modifications are known to profoundly affect the development and behavior of social insects. In the well-known caste differentiation process of honeybee (Apis mellifera), female larvae with identical genomes are fed royal jellydifferently and develop into either normal workers or into very large, long-lived, and extremely fecund queens, and the queen-worker asymmetry of honeybee is known to be result largely to differential genomic imprinting during larval development that involves DNA methylation-based regulation. The discovery of reversible N6-methyladenosine (m6A) RNA methylation modification has defined a new era for RNA-metabolism-related genetic regulation, yet much remains unknown about m6A-mediated post-transcriptional regulatory mechanisms. Here, we report the first honeybee RNA m6A methylome. Specifically, we used the m6A-seq technique to examine the RNA m6A methylomes of honeybee larvae, including queen and worker larvae at multiple instar stages. We identified multiple conserved features of m6A methylation machinery and transcriptome-wide m6A distribution trends among insect species, and observed that m6A marks exert functions in regulating caste differentiation, with apparently particularly strong functional impacts on fifth instar worker larvae. Functional annotation of differentially methylated candidate caste-differentiation-related transcripts revealed many known regulators of caste differentiation (e.g. ILP-2, p110, PI3K, and JHAMT etc.) as well as the widely-studied Vitellogenin gene, which has not previously been implicated in caste differentiation. As ever-more regulatory roles for m6A marks are discovered, honeybees may become an excellent model studying the biology of such epi-transcriptomic regulatory systems, from embryonic development through holometabolous caste-specific development and on towards behavior and the emergent social hierarchies underlying eusociality in animals.
Project description:The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and coevolution.
Project description:Glioblastoma is the most common primary malignant brain tumor with an unfavorable prognosis and a reprogrammed metabolism. In order to define the role of lactic acid in the context of glioblastoma epigenetic remodeling, pediatric GBM cells, KNS42, were growth for 24h in different media conditions (starvation media -0.5mM Glucose; 0.5mM Glutamate or physiological media -5mM Glucose; 0mM Glutamate) with or without L-lactic acid for 24h. Thereafter, cells were harvested and samples were subjected to ChIP isolation using H3K27ac and H3K9ac antibodies. DNA was subsequently processed for CHIP sequencing to assess epigenetic changes mediated by lactic acid.