Project description:The increasing resistence and/or bacterial tolerance to bactericides, such as chlorhexidine, causes worrisome public health problems. Using transcriptomical and microbiological studies, we analysed the molecular mechanisms associated with the adaptation to chlorhexidine in two carbapenemase-producing strains of Klebsiella pneumoniae belonging ST258-KPC3 and ST846-OXA48.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes, 5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. This submission contains the results from six Klebsiella strains (four Klebsiella variicola: AJ005, AJ292, 03-311-0071, 04153260899A and two Klebsiella pneumoniae: AJ218, KPC2) grown in either RPMI or pooled human sera. Six replicates of each condition were subjected to shotgun proteomics and label-free MS1-based quantitation.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strains MS14386.