Project description:An increasing amount of evidence attest that the tea made by albino tea cultivars processes characteristic aroma and taste, which has been considered as a new potential product in the market. Therefore, flavor formation mechanism of albino tea cultivars have drawn exceeding attention from researchers. In this study, transcriptome, metabolomics, and whole-genome bisulfite sequencing (WGBS) were employed to investigate shading effects on leaf color conversion and biosynthesis of three major secondary metabolites in the Albino tea cultivar ‘Yujinxiang’. The increase of leaf chlorophyll level is the major cause of shaded leaf greening from young pale or yellow leaf. Transcriptome analysis showed differentially expressed genes (DEGs) mainly participated in biosynthesis of amino acids, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, sulfur metabolism, purine metabolism, and pentose and glucuronate interconversions in shading period compared with control group. The result of metabolomics indicated the total catechins level of shading group was significantly decreased than the control; however, the abundance of caffeine was markedly increased, and theanine level was nearly not influenced. Whole-genome DNA methylation analysis revealed that the global genomic DNA methylation patterns of shading period were remarkably altered compared with the control. Furthermore, differentially methylated regions (DMRs) and the DMR-related DEGs between shading and non-shading analysis indicated the DMR-related DEGs were the critical participants in biosynthesis of three major secondary metabolites. To sum up, these findings suggested that the altered levels of DNA methylation may be the main cause for biosynthesis changes of three major secondary metabolites in ‘Yujinxiang’.
Project description:In this study we explored the effects of chronological and photoageing on the miRNome of human skin. To this end, miRNA expression was analysed in biopsies collected from sun-exposed (outer arm) and sun-protected (inner arm) skin from fair-skinned (phototype II/III) healthy female volunteers of two age groups: young, 18-25 years and aged, >70 years. Strict inclusion criteria were used for photoageing scoring and for chronological ageing. Microarray analysis revealed that chronological ageing had minor effect on the human skin miRNome. In contrast, photoageing had a robust impact on miRNAs, and a set of miRNAs differentially expressed between sun-protected and sun-exposed skin of the young and aged groups was identified. We have performed miRNome analysis (using microarray) on RNA isolated from sun-exposed and sun-protected skin of young and old females
Project description:Genome wide DNA methylation profiling of epidermal and dermal samples obtained from sun-exposed and sun-protected body sites from younger (<35 years old) and older (>60 years old) individuals. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in dermal and epidermal samples. Samples included 10 younger sun protected dermal samples, 10 younger sun exposed dermal samples, 10 older sun protected dermal samples, 10 older sun exposed dermal samples, 9 younger sun protected epidermal samples, 9 younger sun exposed epidermal samples, 10 older sun protected epidermal sample, 10 older sun exposed epidermal samples.
Project description:Genome wide DNA methylation profiling of epidermal and dermal samples obtained from sun-exposed and sun-protected body sites from younger (<35 years old) and older (>60 years old) individuals. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 450,000 CpGs in dermal and epidermal samples. Samples included 10 younger sun protected dermal samples, 10 younger sun exposed dermal samples, 10 older sun protected dermal samples, 10 older sun exposed dermal samples, 9 younger sun protected epidermal samples, 9 younger sun exposed epidermal samples, 10 older sun protected epidermal sample, 10 older sun exposed epidermal samples. Bisulphite converted DNA from the 78 samples were hybridized to the Illumina Infinium 450k Human Methylation Beadchip.
Project description:Tropospheric ozone causes severe oxidative stress in plants. To investigate the transcriptional responsiveness of adult trees to ozone, fully-expanded sun and shade leaves of mature beech trees were harvested at four time points over the entire vegetation period in 2005 and 2006. Microarray analyses were conducted on leaves from trees grown in the field under ambient and twice-ambient ozone concentrations at Kranzberger Forst (Bavarian). Beech trees changed their transcript levels in response to ozone. In the years 2005 and 2006 different transcription patterns were observed; this may have been a result of different weather conditions and ozone uptake. Furthermore, we obtained differences in mRNA expression patterns between shade and sun leaves. In the ozone-treated sun leaves of 2005, slightly up- and down-regulated transcript levels were detected, particularly in the spring and autumn, whereas shade leaves clearly exhibited reduced mRNA-levels, particularly at the end of the vegetation period. In 2006, this pattern could not be confirmed, and in the autumn, four other transcripts were slightly up-regulated in ozone-treated shade leaves. In addition, two additional transcripts were found to be influenced in sun leaves in the spring/summer. While we detected changes in the levels of only a few transcripts, the observed effects were not identical in both years. In conclusion, elevated ozone exhibited very small influence on the transcription levels of genes of mature beech trees. The study was carried out at the Kranzberger Forst research site (near Freising, Germany: 48°25’08’’N, 11°39’41’””E, 485m (Pretzsch et al., 1998) in a mixed 60-year old stand (closed canopy) with about 30m high European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees. Free-air ozone fumigation started in May 2000 at double the ambient ozone concentrations with a cut-off at 150 nl l-1 (Werner and Fabian, 2002), thereby avoiding acute damage to the leaves. The ozone concentrations were measured at four heights within the fumigated space and were additionally monitored with 200 passive samplers (Werner and Fabian, 2002). In 2005 the AOT40 value under twice ambient ozone was 64.3 μmol mol-1 h and in 2006 69.0 μmol mol-1 h. Detailed ozone concentration data over the growing seasons have been reported elsewhere (Gielen et al., 2007; Kitao et al., 2009). Sun and shade leaves from 60-year-old European beech trees were harvested in a total of 8 sampling campaigns in 2005 and 2006. Using scaffolding, five leaves of sun crown (height of about 25 m) and five shade (height of about 19 m) leaves were taken from each of five control and ozone-treated trees. The sampling was carried out in May, June, August, and September of 2005 and in June, August, September and October of 2006. To avoid diurnal effects, the samples were always taken around 11 a.m. For each tree, the four leaves (sun or shade) were combined, frozen in liquid nitrogen and stored at -80 °C until RNA isolation. For one time point we had five microarrays and five dye-swaps for each of sun and shade leaves. The probes of the trees under ambient ozone were labelled with Cy3 and probes of the trees under 2x ambient were labelled with Cy5. For every pair of trees a dye control were carried out, where the control trees were labelled with Cy5 and the ozone-treated one with Cy3. For statistical analysis a coefficient of variation about all microarrays of one time point was calculated using Acuity 4.0 microarray informatics software [Axon Instruments]. We used only those spots that had a coefficient of variation < 50 and were present on at least half of identical slides. The ozone-changed transcript level of genes were expressed in the median values as log2 ratios. The following Samples are missing from this submission: Sun leaves, rep.2 (non-dye-swap) Sun leaves, rep.2 (dye-swap) Sun leaves, rep.3 (non-dye-swap) Sun leaves, rep.4 (non-dye-swap)
Project description:Tropospheric ozone causes severe oxidative stress in plants. To investigate the transcriptional responsiveness of adult trees to ozone, fully-expanded sun and shade leaves of mature beech trees were harvested at four time points over the entire vegetation period in 2005 and 2006. Microarray analyses were conducted on leaves from trees grown in the field under ambient and twice-ambient ozone concentrations at Kranzberger Forst (Bavarian). Beech trees changed their transcript levels in response to ozone. In the years 2005 and 2006 different transcription patterns were observed; this may have been a result of different weather conditions and ozone uptake. Furthermore, we obtained differences in mRNA expression patterns between shade and sun leaves. In the ozone-treated sun leaves of 2005, slightly up- and down-regulated transcript levels were detected, particularly in the spring and autumn, whereas shade leaves clearly exhibited reduced mRNA-levels, particularly at the end of the vegetation period. In 2006, this pattern could not be confirmed, and in the autumn, four other transcripts were slightly up-regulated in ozone-treated shade leaves. In addition, two additional transcripts were found to be influenced in sun leaves in the spring/summer. While we detected changes in the levels of only a few transcripts, the observed effects were not identical in both years. In conclusion, elevated ozone exhibited very small influence on the transcription levels of genes of mature beech trees.