Project description:MicroRNAs are important cellular regulators and their dysfunctions are associated with various disease. miR-371/372/373 was found co-regulated in HBV-producing HepG2.2.15 cells when compared to its non-HBV producing maternal HepG2 cells. To obtain a glimpse of the potential influence of the enforced miR-371-372-373 cluster in HepG2 gene expression, a two-color Capitalbio 70-mer oligo microarray platform, which contained 21,329 well-characterized human gene probes, was used to identify the differentially expressed genes between miR-371-372-373-HepG2 and mock-HepG2 in two independent biological replicate. miR-371-372-373-HepG2 vs. mock-HepG2
Project description:MicroRNAs are important cellular regulators and their dysfunctions are associated with various disease. miR-371/372/373 was found co-regulated in HBV-producing HepG2.2.15 cells when compared to its non-HBV producing maternal HepG2 cells. To obtain a glimpse of the potential influence of the enforced miR-371-372-373 cluster in HepG2 gene expression, a two-color Capitalbio 70-mer oligo microarray platform, which contained 21,329 well-characterized human gene probes, was used to identify the differentially expressed genes between miR-371-372-373-HepG2 and mock-HepG2 in two independent biological replicate.
Project description:The miR-371~373 cluster is a suspected repressor of colon cancer initiation and progression. To better understand its role in metastasis initiation, we used microarray expression analysis to identify potential target genes of this miRNA cluster Potential target genes were defined as significantly downregulated genes after stable overexpression of the miR-371~373 cluster
Project description:Malignant germ-cell-tumours (GCTs) are characterised by microRNA (miRNA/miR-) dysregulation, with universal over-expression of miR-371~373 and miR-302/367 clusters regardless of patient age, tumour site, or subtype (seminoma/yolk-sac-tumour/embryonal carcinoma). These miRNAs are released into the bloodstream, presumed within extracellular-vesicles (EVs) and represent promising biomarkers. Here, we comprehensively examined the role of EVs, and their miRNA cargo, on (fibroblast/endothelial/macrophage) cells representative of the testicular GCT (TGCT) tumour microenvironment (TME). Small RNA next-generation-sequencing was performed on 34 samples, comprising representative malignant GCT cell lines/EVs and controls (testis fibroblast [Hs1.Tes] cell-line/EVs and testis/ovary samples). TME cells received TGCT co-culture, TGCT-derived EVs, and a miRNA overexpression system (miR-371a-OE) to assess functional relevance. TGCT cells secreted EVs into culture media. MiR-371~373 and miR-302/367 cluster miRNAs were overexpressed in all TGCT cells/subtypes compared with control cells and were highly abundant in TGCT-derived EVs, with miR-371a-3p/miR-371a-5p the most abundant. TGCT co-culture resulted in increased levels of miRNAs from the miR-371~373 and miR-302/367 clusters in TME (fibroblast) cells. Next, fluorescent labelling demonstrated TGCT-derived EVs were internalised by all TME (fibroblast/endothelial/macrophage) cells. TME (fibroblast/endothelial) cell treatment with EVs derived from different TGCT subtypes resulted in increased miR-371~373 and miR-302/367 miRNA levels, and other generic (eg, miR-205-5p/miR-148-3p) and subtype-specific (seminoma, eg, miR-203a-3p; yolk-sac-tumour, eg, miR-375-3p) miRNAs. MiR-371a-OE in TME cells resulted in increased collagen contraction (fibroblasts) and angiogenesis (endothelial cells), via direct mRNA downregulation and alteration of relevant pathways. TGCT cells communicate with nontumour stromal TME cells through release of EVs enriched in oncogenic miRNAs, potentially contributing to tumour progression.
Project description:Background. MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant- GCTs, regardless of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six of eight microRNAs from these clusters contain the seed ‘AAGUGC’, determining mRNA targeting. Here we sought to identify the significance of these observations by targeting these microRNAs functionally. Methods. We targeted miR-371~373 and/or miR-302/367 clusters in malignant-GCT cell lines, using CRISPR-Cas9, gapmer primary miR-302/367 transcripts inhibition, and peptide- nucleic-acid (PNA) or locked-nucleic-acid (LNA)-DNA inhibition targeting miR-302a-d-3p, and undertook relevant functional assays. Results. MiR-302/367 cluster microRNAs made the largest contribution to AAGUGC seed abundance in malignant-GCT cells, regardless of subtype (seminoma/YST/EC). Following unsuccessful use of CRISPR-Cas9, gapmer, and PNA systems, LNA-DNA-based targeting resulted in growth inhibition in seminoma and YST cells. This was associated with de- repression of multiple mRNAs targeted by ‘AAGUGC’ seed-containing microRNAs, with pathway analysis confirming predominant disruption of Rho-GTPase signaling, vesicle organization/transport, and cell-cycle regulation, findings corroborated in clinical samples. Further LNA-DNA inhibitor studies confirmed direct cell-cycle effects, with increase of cells in G0/G1-phase and decrease in S-phase. Conclusion. Targeting of specific miR-371~373 and miR-302/367 microRNAs in malignant- GCTs demonstrated their functional significance, with growth inhibition mediated through cell-cycle disruption.
Project description:Leishmania amazonensis is a protozoan that primarily infects macrophages and causes cutaneous leishmaniasis in humans. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at posttranscriptional levels. Previous work demonstrated changes in miRNA profile of host cells favoring parasite survivel. Thus, here we demonstrate that human macrophages upregulate several miRNAs on the initial time points of infection, including the hsa-miR-372, hsa-miR-373, and hsa-miR-520d, which present the same seed. Further functional analysis demonstrated that inhibition of the miR-372 impaired Leishmania survival in THP-1 macrophages and the effect was further enhanced with combinatorial inhibition of the miR-372/373/520d family, pointing to a cooperative mechanism. Our study demonstrated miRNA-dependent modulation of polyamines production, establishing permissive conditions for intracellular parasite survival.Our findings suggest that the miR-372/373/520d family may represent a potential target for the development of new therapeutic strategies against cutaneous leishmaniasis.
Project description:Naïve human pluripotent stem cells (hPSC) represent an earlier time-point in embryogenesis than conventional, ‘primed’ hPSCs. We present a comprehensive miRNA profiling of naïve-to-primed transition in hPSC, a process resembling aspects of early in vivo embryogenesis. We identify miR-143-3p and miR-22-3p as markers of the naïve state and miR-363-5p, several members of the miR-17 family, miR-302 family as primed markers. We uncover that miR-371-373 are highly upregulated in naïve hPSC. MiR-371-373 are the human homologs of the mouse miR-290 family, which are the most highly expressed miRNAs in mPSC. This aligns with the consensus that naïve hPSC resemble mPSC, showing that the absence of miR-371-373 in conventional hPSC is due to cell state rather than a species difference.
Project description:Very recently, a number of independent studies showed that serum levels of embryonic micro-RNA (miR) clusters 371-3 and 302abc/367 are predictive for the presence of testicular type II germ cell tumors. These miRs could be used to sensitively detect SE and EC components which are indeed known to express these miRs [1-7]. This study investigates ca 750 miRs in a high throughput approach to validate these previously identified markers and identify novel potential miR markers for testicular type II germ cell tumors. 1. Belge, G., et al., Serum levels of microRNAs miR-371-3: a novel class of serum biomarkers for testicular germ cell tumors? Eur Urol, 2012. 61(5): p. 1068-9. 2. Dieckmann, K.P., et al., MicroRNAs miR-371-3 in serum as diagnostic tools in the management of testicular germ cell tumours. Br J Cancer, 2012. 107(10): p. 1754-60. 3. Gillis, A.J., et al., Targeted serum miRNA (TSmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol Oncol, 2013. 7(6): p. 1083-92. 4. Gillis, A.J., et al., High-throughput microRNAome analysis in human germ cell tumours. J Pathol, 2007. 213(3): p. 319-28. 5. Murray, M.J. and N. Coleman, Testicular cancer: a new generation of biomarkers for malignant germ cell tumours. Nat Rev Urol, 2012. 9(6): p. 298-300. 6. Murray, M.J., et al., Identification of microRNAs From the miR-371~373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am J Clin Pathol, 2011. 135(1): p. 119-25. 7. Voorhoeve, P.M., et al., A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006. 124(6): p. 1169-81.
Project description:To examine the genome-wide gene regulation due to the common seed sequence of the members of miR-302/3272/3273/520 family miRNAs and dsEcad640, we performed microarray profiling of gene expression by the transfection of chemically synthesized dsEcad640, miR-302a,miR-372, miR-373, miR-520c,and miR-520f duplexes into PC-3 cells.