Project description:Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle.
Project description:Beef represents a major diet component and source of protein in many countries. With an increment demand for beef, the industry is currently undergoing changes towards natural produced beef. Consumers not only concern about product quality, but also for the well-being of animals. Therefore, the consumption of grass-fed meat is continuously growing. However, the nutritional true differences between feeding systems are still unclear. The aim of this study was to examine latissimus dorsi muscle quality and animal welfare by transcriptome and metabolome profiles, and to identify biological pathways related to the differences between grass- and grain-fed Angus steers. By RNA-Seq analysis of latissimus dorsi muscle, we have recognized 241 differentially expressed genes (FDR < 0.1). The metabolome examination of muscle and blood revealed 163 and 179 altered compounds in each tissue (P-value < 0.05), respectively. Accordingly, alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation, have been observed. In summary, this study demonstrates a unique transcriptomic and metabolic signature in the muscle of grain and grass finished cattle. Results support the accumulation of anti-inflammatory n3 polyunsaturated fatty acids in grass finished cattle, while higher levels of n6 PUFAs in grain finished animals may promote inflammation and oxidative stress. Furthermore, grass-fed animals produce tender beef with lower total fat and higher omega3/omega6 ratio than grain fed animals, which could potentially benefit consumer health. Finally, blood cortisol levels strongly indicate that grass fed animals experience less stress than the grass fed individuals
Project description:Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle. Ruminal wall samples from two randomly chosen animals per group were obtained, totaling four samples. The animals were born, raised and maintained at the Wye Angus farm. This herd, which has been closed for almost 75 years and yielded genetically similar progenies, constitutes an excellent resource to perform transcriptomic analysis. The genetic resemblance among individuals permits us to better control the cause of variation between experimental clusters and individuals. The randomly chosen pairs of animals were part of larger sets of steers that received a particular treatment. All animals received the same diet until weaning. The grain group received conventional diet consisting of corn silage, shelled corn, soy bean and trace minerals. The grass fed steers consumed normally grazed alfalfa; during wintertime, bailage was utilized. The alfalfa has been harvested from land without any fertilizers, pesticides or other chemicals. The steers ate no animal, agricultural or industrial byproducts and never receive any type of grain. Then, the calves were randomly assigned to one diet and exclusively received that regimen until termination. Grain–fed animals reached the market weight around the age of 14 month-old, however, grass-fed steers required approximately 200 additional days to achieve the same weight. Immediately after termination at the Old Line Custom Meat Company (Baltimore, MD) a small piece of ruminal wall was excised, cleaned and preserved at -80°C for posterior processing.
Project description:The grass-fed cattle obtain nutrients directly from pastures containing limited assimilable energy but abundant amount of fiber; by contrast, grain-fed steers receive a diet that is comprised mainly of grains and serves as an efficient source of high-digestible energy. Besides energy, these two types of diet differ in a large number of nutritional components. Additionally, animals maintained on rich-energy regimen are more likely to develop metabolic disorders and infectious diseases than pasture raised individuals. Thus, we hypothesize that spleenâ??the main immune organâ??may function differently under disparate regimes. The objective of this study was to find the differentially expressed genes in the spleen of grass-fed and grain-fed steers, and furtherly explore the potential involved biopathways. Through RNA sequencing (RNA-Seq), we detected 123 differentially expressed genes. Based on these genes, we performed an Ingenuity Pathway Analysis (IPA) and identified 9 significant molecular networks and 13 enriched biological pathways. Two of the pathways, Nur77 signaling in T lymphocytes and calcium-induced T lymphocyte apoptosis which are immune related, contain a pair of genes HLA-DRA and NR4A1 with dramatically altered expression level. Collectively, our results provided valuable insights into understanding the molecular mechanism of spleen under varied feeding regimens. We collected spleen samples from two randomly chosen animals per group, totaling four samples. The animals were born and raised at the Wye Angus farm, which has produced genetically similar progenies. The genetic resemblance among individuals permitted us to better control the variation between experimental individuals, constituting an excellent resource to perform scientific research. All animals included in this study received the same diet until weaning. Next, we assigned the animals to one certain diet at random, and exclusively raised them under that regimen until termination. The diet of grain-fed group consisted of soybean, shelled corn, corn silage and trace minerals. The grass-fed steers normally received alfalfa harvested from land without any fertilizers, pesticides or other chemicals; during wintertime, bailage was supplied. Grass-fed individuals ate no animal, agricultural or industrial byproducts and never consumed any type of grain. Grain-fed animals reached the market weight around 14 month-old; however, grass-fed steers needed approximately 200 additional days to achieve the same weight. Immediately after termination at the Old Line Custom Meat Company (Baltimore, MD), a small piece of spleen was incised, washed and frozen at -80°C for posterior processing.
Project description:Beef represents a major diet component and source of protein in many countries. With an increment demand for beef, the industry is currently undergoing changes towards natural produced beef. Consumers not only concern about product quality, but also for the well-being of animals. Therefore, the consumption of grass-fed meat is continuously growing. However, the nutritional true differences between feeding systems are still unclear. The aim of this study was to examine latissimus dorsi muscle quality and animal welfare by transcriptome and metabolome profiles, and to identify biological pathways related to the differences between grass- and grain-fed Angus steers. By RNA-Seq analysis of latissimus dorsi muscle, we have recognized 241 differentially expressed genes (FDR < 0.1). The metabolome examination of muscle and blood revealed 163 and 179 altered compounds in each tissue (P-value < 0.05), respectively. Accordingly, alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation, have been observed. In summary, this study demonstrates a unique transcriptomic and metabolic signature in the muscle of grain and grass finished cattle. Results support the accumulation of anti-inflammatory n3 polyunsaturated fatty acids in grass finished cattle, while higher levels of n6 PUFAs in grain finished animals may promote inflammation and oxidative stress. Furthermore, grass-fed animals produce tender beef with lower total fat and higher omega3/omega6 ratio than grain fed animals, which could potentially benefit consumer health. Finally, blood cortisol levels strongly indicate that grass fed animals experience less stress than the grass fed individuals The steers came from a closed Wye Angus herd with very similar genetics. The grass-fed group was comprised of steers that received alfalfa and orchard grass hay, clover and orchard grass pasture, or orchard grass and alfalfa pasture. The grass-fed individuals consumed grazed alfalfa upon availability and bales during winter and were not exposed to any corn, any form of grain or feed by-products. The alfalfa and grass hay were harvested from land that has had minimal fertilizer and no application of pesticides or inorganic chemicals. The control group was fed a conventional diet consisting of corn silage, soybean, shelled corn and minerals. The pastures were managed as organic landsâwithout fertilizers, pesticides or any chemical additives. At the slaughter plant, 10 ml whole blood sample from the jugular vein was collected in EDTA tubes and directly storage at -80°C. Then, a small piece of longissimus dorsi muscle was obtained from each hot carcass at the level of the 12th intercostal space and immediately frozen in dry ice for posterior analysis.
Project description:Enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis share many traits in terms of infections they cause, but their epidemiology and ecology seem to differ in many ways. Pigs are the only known reservoir for Y. enterocolitica 4/O:3 strains while Y. pseudotuberculosis strains have been isolated from variety of sources including fresh vegetables and wild animals. A comparative genomic hybridization (CGH) analysis with a DNA microarray based on three Yersinia enterocolitica and four Yersinia pseudotuberculosis genomes was conducted to shed light on genomic differences between the enteropathogenic Yersinia. In total 99 strains isolated from various sources were hybridized and analyzed.
Project description:The grass-fed cattle obtain nutrients directly from pastures containing limited assimilable energy but abundant amount of fiber; by contrast, grain-fed steers receive a diet that is comprised mainly of grains and serves as an efficient source of high-digestible energy. Besides energy, these two types of diet differ in a large number of nutritional components. Additionally, animals maintained on rich-energy regimen are more likely to develop metabolic disorders and infectious diseases than pasture raised individuals. Thus, we hypothesize that spleen–the main immune organ–may function differently under disparate regimes. The objective of this study was to find the differentially expressed genes in the spleen of grass-fed and grain-fed steers, and furtherly explore the potential involved biopathways. Through RNA sequencing (RNA-Seq), we detected 123 differentially expressed genes. Based on these genes, we performed an Ingenuity Pathway Analysis (IPA) and identified 9 significant molecular networks and 13 enriched biological pathways. Two of the pathways, Nur77 signaling in T lymphocytes and calcium-induced T lymphocyte apoptosis which are immune related, contain a pair of genes HLA-DRA and NR4A1 with dramatically altered expression level. Collectively, our results provided valuable insights into understanding the molecular mechanism of spleen under varied feeding regimens.