Project description:Rhododendron is well known woody plant, as having high ornamental and economic values. Heat stress is one of the important environmental stresses that effects Rhododendron growth. Recently, melatonin was reported to alleviate abiotic stress in plants. However, the role of melatonin in Rhododendron is still unknown. In the present study, the effect of melatonin on Rhododendron under heat stress and the potential mechanism was investigated. Through morphological characterization and chlorophyll a fluorescence analysis, 200µM was selected for the best melatonin concentration to mitigate heat stress in Rhododendron. To reveal the mechanism of melatonin priming alleviating the heat stress, the photosynthesis indexes, Rubisco activity and ATP content were detected in 25 ℃, 35 ℃ and 40 ℃. The results showed that melatonin improves electron transport rate (ETR), PSII and PSI activity, Rubisco activity and ATP content under high temperature stress. Furthermore, transcriptome analysis showed that a significant enrichment of differentially expressed genes in the photosynthesis pathway, and most of genes in photosynthesis pathway displayed a more significantly slight down-regulation under high temperature stress in melatonin-treatment plants, compared with melatonin-free plants. We identified PGR5……Together, these results demonstrate that melatonin could promote the photosynthetic electron transport, improve the enzymes activities in Calvin cycle and the production of ATP, and thereby increase photosynthetic efficiency and CO2 assimilation capacity under heat stress, through regulating the expression of some key genes, such as PGR5…Therefore, melatonin application displayed great potential to cope with the heat stress in Rhododendron.
Project description:Melatonin plays a potential role in multiple plant developmental processes and stress response. However, there are no reports regarding exogenous melatonin promoting rice seed germination under salinity and nor about the underlying molecular mechanisms at genome-wide. Here, we revealed that exogenous application of melatonin conferred roles in promoting rice seed germination under salinity. The putative molecular mechanisms of exogenous melatonin in promoting rice seed germination under high salinity were further investigated through metabolomic and transcriptomic analyses. The results state clearly that the phytohormone contents were reprogrammed, the activities of SOD, CAT, POD were enhanced, and the total antioxidant capacity was activated under salinity by exogenous melatonin. Additionally, melatonin-pre-treated seeds exhibited higher concentrations of glycosides than non-treated seeds under salinity. Furthermore, exogenous melatonin alleviated the accumulation of fatty acids induced by salinity. Genome-wide transcriptomic profiling identified 7160 transcripts that were differentially expressed in NaCl, MT100 and control. Pathway and GO term enrichment analysis revealed that genes involved in the response to oxidative stress, hormone metabolism, heme building, mitochondrion, tricarboxylic acid transformation were altered after melatonin pre-treatment under salinity. This study provides the first evidence of the protective roles of exogenous melatonin in increasing rice seed germination under salt stress, mainly via activation of antioxidants and modulation of metabolic homeostasis.
Project description:Proteomics was used to analyze the effect of 100μM exogenous melatonin on protein expression of tomato leaves under low night temperature stress.
Project description:Background: Melatonin is considered to be a polyfunctional master regulator in animals and higher plants. Exogenous melatonin inhibits plant infection by multiple diseases; however, the role of melatonin in cucumber green mottle mosaic virus (CGMMV) infection remains unknown. Results: In this study, we demonstrated that exogenous melatonin treatment can effectively control CGMMV infection. The greatest control effect was achieved by 3 days of root irrigation at a melatonin concentration of 50 µM. Exogenous melatonin showed preventive and therapeutic effects against CGMMV infection at early stage in tobacco and cucumber. We utilized RNA sequencing technology to compare the expression profiles of mock-inoculated, CGMMV-infected, and melatonin+CGMMV-infected tobacco leaves. Defense-related gene CRISP1 was specifically upregulated in response to melatonin, but not to salicylic acid (SA). Silencing CRISP1 enhanced the preventive effects of melatonin on CGMMV infection, but had no effect on CGMMV infection. We also found exogenous melatonin has preventive effects against another Tobamovirus, pepper mild mottle virus (PMMoV) infection. Conclusions: Together, these results indicate that exogenous melatonin controls two Tobamovirus infection and inhibition of CRISP1 enhanced melatonin control effects against CGMMV infection, which may lead to the development of a novel melatonin treatment for Tobamovirus control.
Project description:Physiologically based pharmacokinetic (PBPK) models were developed using MATLAB Simulink(®) to predict diurnal variations of endogenous melatonin with light as well as pharmacokinetics of exogenous melatonin via different routes of administration. The model was structured using whole body, including pineal and saliva compartments, and parameterized based on the literature values for endogenous melatonin. It was then optimized by including various intensities of light and various dosage and formulation of melatonin. The model predictions generally have a good fit with available experimental data as evaluated by mean squared errors and ratios between model-predicted and observed values considering large variations in melatonin secretion and pharmacokinetics as reported in the literature. It also demonstrates the capability and usefulness in simulating plasma and salivary concentrations of melatonin under different light conditions and the interaction of endogenous melatonin with the pharmacokinetics of exogenous melatonin. Given the mechanistic approach and programming flexibility of MATLAB Simulink(®), the PBPK model could provide predictions of endogenous melatonin rhythms and pharmacokinetic changes in response to environmental (light) and experimental (dosage and route of administration) conditions. Furthermore, the model may be used to optimize the combined treatment using light exposure and exogenous melatonin for maximal phase advances or delays
Model is encoded by Ruby and submitted to BioModels by Ahmad Zyoud.
2020-03-20 | MODEL2003190006 | BioModels
Project description:Effects of exogenous melatonin on transcriptional level of tomato at low night temperature
Project description:Temperature is a critical environmental factor governing plant growth and development. The difference between day temperature (DT) and night temperature (NT), abbreviated as DIF, influences plant architecture. Subjecting plants to artificial DIF treatments is an effective strategy in ornamental horticulture. For example, negative DIF (when DT – NT < 0) generally inhibits stem elongation, resulting in dwarf plants. However, the mechanisms underlying stem growth regulation by DIF remains to be completely elucidated. In this study, we aimed to analyze the growth, transcriptome, and phytohormone profiles of tomato (Solanum lycopersicum) seedlings grown under different DIF treatments. Under positive DIF (when DT – NT > 0), in contrast to the control temperature (25°C/20°C, DT/NT), high temperature (30°C/25°C) increased stem length and thickness, as well as the number of xylem vessels. Conversely, compared with the positive high temperature DIF treatment (30°C/25°C), under negative DIF treatment (25°C/30°C) stem elongation was inhibited, but stem thickness and the number of xylem vessels were not affected. The negative DIF treatment decreased the expression of gibberellin (GA)-, auxin-, and cell wall-related genes in the epicotyl, as well as the concentrations of GAs and indole-3-acetic acid (IAA). The expression of these genes and concentrations of these hormones increased under high temperature compared to those under the control temperature positive DIF. Our results suggest that stem length in tomato seedlings is controlled by changes in GA and IAA biosynthesis in response to varying day and night temperatures.
Project description:Chrysanthemum is a garden plant with good economic benefit and high ornamental value. Chrysanthemum in the key period of flowering in autumn and winter, vulnerable to cold damage, affecting the normal growth of the chrysanthemum plant and even death. little is known regarding the study of histone crotonylation in plant cold response. In this study, we first obtained reference chrysanthemum transcriptome data via RNA sequencing. Next, we quantitatively investigated the chrysanthemum proteome, crotonylation, and the association between them in chrysanthemum following low temperature. In total, 365669 unigenes, 6693 proteins and 2017 crotonylation sites were quantified under low temperature stress. There were 24631 up-regulated and 22648 down-regulated unigenes (absolute log2-fold change > 1 and P value<0.05), 393 up-regulated and 500 down-regulated proteins using a 1.2-fold threshold (P<0.05). The lysine crotonylation mainly influenced in photosynthesis, ribosome, antioxidant enzyme and ROS system. In the process of low temperature, 61 lysine crotonylation sites in 89 proteins were up-regulated and 87 lysine crotonylation sites in 72 proteins are down-regulated (1.2-fold threshold, P<0.05).
2021-01-04 | PXD010297 | Pride
Project description:Sweetpotato under low temperature stress