Project description:We investigated the genome-wide distribution of Okazaki fragments in the commonly used laboratory Saccharomyces cerevisiae strain S288C to study the DNA replication model adopted by the budding yeast. The method based upon lambda exonuclease digestion for purification of RNA-primed replication intermediates was first improved to be suitable for the purification of Okazaki fragments. Then, we used this improved method to purify Okazaki fragments from S288C yeast cells, followed by Illumina sequencing. We found that the expected asymmetric distribution of Okazaki fragments around confirmed replication origins, which was derived from the semi-discontinuous DNA replication model, was not observed on S. cerevisiae chromosomes. Even around two highly efficient replication origins, ARS522 and ARS416, the ratios of Okazaki fragments on both strands were inconsistent with the semi-discontinuous DNA replication model. Our study supported the discontinuous DNA replication model. Besides, we also observed that Okazaki fragments were overpresented in the transcribed regions in S. cerevisiae mitochondrial genome, which indicated the interplay between transcription and DNA replication. Examination of the distribution of Okazaki fragments in Saccharomyces cerevisiae strain S288C.
Project description:The transcriptome signature of peripheral blood mononuclear cells (PBMCs) of Ladakhi cattle adapted to high altitude vis a vis Sahiwal cattle adapted to the arid/semi-arid region at mean sea level was established using bovine expression microarray chips. The transcriptome analysis of PBMCs from these cattle types living at two distinct altitudes, resulted in identification of several hundred differentially expressed genes, biological processes, molecular functions and pathways.
Project description:We investigated the genome-wide distribution of Okazaki fragments in the commonly used laboratory Saccharomyces cerevisiae strain S288C to study the DNA replication model adopted by the budding yeast. The method based upon lambda exonuclease digestion for purification of RNA-primed replication intermediates was first improved to be suitable for the purification of Okazaki fragments. Then, we used this improved method to purify Okazaki fragments from S288C yeast cells, followed by Illumina sequencing. We found that the expected asymmetric distribution of Okazaki fragments around confirmed replication origins, which was derived from the semi-discontinuous DNA replication model, was not observed on S. cerevisiae chromosomes. Even around two highly efficient replication origins, ARS522 and ARS416, the ratios of Okazaki fragments on both strands were inconsistent with the semi-discontinuous DNA replication model. Our study supported the discontinuous DNA replication model. Besides, we also observed that Okazaki fragments were overpresented in the transcribed regions in S. cerevisiae mitochondrial genome, which indicated the interplay between transcription and DNA replication.