Project description:Transcript profiles of H. annosum from different tissues and mycelium grown on different substrates and under different stresses were analyzed. The array probes were designed from gene models taken from the Joint Genome Institute (JGI, department of energy) H. irregulare genome sequence version 1. One aim of this study was to compare gene expression profiles of H. annosum during saprotrophic growth on topsoil from mineral soil, drained and undrained peatland.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Analysis of aquatic microbial communities revealed that parts of its diversity consist of bacteria with cell sizes of ~0.1 μm. Such bacteria can show genomic reductions and metabolic dependencies with other bacteria. So far, no study investigated if such bacteria exist in terrestrial environments e.g. soil. Here, we show that such bacteria also exist in soil. The isolated bacteria was identified as Hylemonella gracilis.Co-culture assays with phylogenetically different soil bacteria revealed that H. gracilis grows better when co-cultured with other soil bacteria. Transcriptomics and metabolomics showed that H. gracilis was able to change gene expression, behavior, and biochemistry of the interacting bacteria without direct contact. Our study revealed that bacteria are present in soil that can pass through 0.1 µm filters. Such bacteria may have been overlooked in previous research on soil microbial communities and may contribute to the symbiosis of soil bacterial communities.
2022-12-14 | MTBLS5841 | MetaboLights
Project description:diversity of soil bacteria
| PRJNA541802 | ENA
Project description:soil bacteria community diversity
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and of two beneficial, and neutral soil bacteria during their interactions in vitro.
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction