Project description:The aim of this study is to profile gene expression dynamics during the in vitro differentiation of embryonic stem cells into ventral motor neurons. Expression levels were profiled using Affymetrix microarrays at six timepoints during in vitro differentiation: ES cells (Day 0), embryoid bodies (Day 2), retinoid induction of neurogenesis (Day 2 +8hours of exposure to retinoic acid), neural precursors (Day 3), progenitor motor neurons (Day 4), postmitotic motor neurons (Day 7). The differentiation of ventral motor neurons is induced by treating embryonic stem cell cultures with retinoic acid and hedgehog agonist. Here, gene expression patterns are profiled at various defined stages during the differentiation process using Affymetrix expression arrays.
Project description:The aim of this study is to profile gene expression dynamics during the in vitro differentiation of embryonic stem cells into ventral motor neurons. Expression levels were profiled using Affymetrix microarrays at six timepoints during in vitro differentiation: ES cells (Day 0), embryoid bodies (Day 2), retinoid induction of neurogenesis (Day 2 +8hours of exposure to retinoic acid), neural precursors (Day 3), progenitor motor neurons (Day 4), postmitotic motor neurons (Day 7).
Project description:The expression of v5-tagged Hoxc9 is induced and ChIP-seq is used to profile genome-wide occupancy in differentiating motor neurons The differentiation of ventral motor neurons is induced by treating embryonic stem cell cultures with retinoic acid and hedgehog signaling. Here, ChIP-seq is used to profile the genome-wide occupancy of Hoxc9 after five days of differentiation.
Project description:[original Title] Rapid and synchronous clearance of PcG histone modifications from Hox genes anticipates motor neuron differentiation. Hox genes are expressed in patterns that are spatially and temporally collinear with their chromosomal organization. This feature is an evolutionarily conserved hallmark of embryonic development, and in vertebrates it is critical, among others, for the specification of motor neuron subtypes and the wiring of sensory-motor circuits. We show here that the differentiation of motor neurons from stem cells is accompanied by a synchronous, domain-wide clearance of M-bM-^@M-^\repressiveM-bM-^@M-^] Polycomb (PcG)-dependent histone methylation from Hox gene chromatin domains. These findings argue against the idea, advanced recently, that the collinear dynamics of Hox gene expression invariably reflects the progressive clearance of repressive chromatin modifications. The rapid establishment of stable chromatin domains in response to a transient patterning signal likely serves as a molecular correlate of enduring rostro-caudal neural identity, which underlies the specification of postmitotic motor neuron subtype diversity and neuronal circuit assembly. The differentiation of ventral motor neurons is induced by treating embryonic stem cell cultures with retinoic acid and hedgehog agonist. Here, ChIP-chip using a custom Agilent array is used to profile the occupancy of H3K27me3, H3K4me3, and H3K79me2 at various defined stages during the differentiation process.
Project description:Among its many roles in development, retinoic acid determines the anterior-posterior identity of differentiating motor neurons by activating Retinoic Acid Receptor (RAR)-mediated transcription. RAR is thought to bind the genome constitutively, and only induce transcription in the presence of the retinoid ligand. However, little is known about where RAR binds to the genome or how it selects target sites. We tested the constitutive RAR binding model using the retinoic acid-driven differentiation of mouse embryonic stem cells into differentiated motor neurons. We find that retinoic acid treatment results in widespread changes in RAR genomic binding, including novel binding to genes directly responsible for anterior-posterior specification, as well as the subsequent recruitment of the basal polymerase machinery. Finally, we discovered that the binding of transcription factors at the embryonic stem cell stage can accurately predict where in the genome RAR binds after initial differentiation. We have characterized a ligand-dependent shift in RAR genomic occupancy at the initiation of neurogenesis. Our data also suggests that enhancers active in pluripotent embryonic stem cells may be preselecting regions that will be activated by RAR during neuronal differentiation. The differentiation of ventral motor neurons is induced by treating embryonic stem cell cultures with retinoic acid. Here, ChIP-seq is used to profile the genome-wide occupancy of RAR isofroms both immediately prior to and during exposure of the cells to retinoic acid. ChIP-seq is also used to profile the genomic occupancy of Pol2 with phosphorylated serine 5 (Pol2-S5P) and phosphorylated serine 2 (Pol2-S2P) after exposure to retinoic acid.
Project description:Purpose: Characterize the role of the coactivator subunit TAF9b during differentiation of embryonic stem cells into motor neurons as well in mouse newborn spinal column tissues. RNA-seq comparing WT and TAF9B KO mouse ES cells differentiated into motor neurons. RNA-seq comparing WT and TAF9B KO mouse newborn spinal column tissues. ChIP-seq mapping TAF9b and RNA Pol II binding sites in in vitro differentiated motor neurons.
Project description:RNA sequencing analysis of Hb9::GFP mouse embryonic fibroblasts, Hb9::GFP+ primary mouse embryonic motor neurons at day E13.5, Hb9::GFP+ mouse embryonic stem cell-derived motor neurons, Hb9::GFP+ mouse induced pluripotent stem cell derived motor neurons, and Hb9::GFP+ mouse induced motor neurons generated using transcription factor overexpression. The goal of this project is to evaluate the ability of directed differentiation and lineage conversion techniques to generate a bona fide neuronal subtype.
Project description:Purpose: Characterize the role of the coactivator subunit TAF9b during differentiation of embryonic stem cells into motor neurons as well in mouse newborn spinal column tissues.
Project description:Analysis of gene expression differences in three types of mouse motor neurons: (1) those harvested from E13.5 mouse embryos; (2) those derived from embryonic stem cells by directed differentiation; and (3) those made from mouse embryonic fibroblasts by transcription factor reprogramming. Hb9::GFP+ mouse motor neurons were obtained by three methods [(1) dissection of Hb9::GFP-transgenic E13.5 mouse embryo spinal cord; (2) directed differentiation of an Hb9::GFP-transgenic mouse embryonic stem cell line, V6.5; (3) reprogramming of Hb9::GFP-transgenic mouse embryonic fibroblasts by overexpression of 10 transcription factors]. Each type of motor neuron was purified by FACS and harvested in Trizol. Total RNA was purified and prepared for hybridization onto Illumina MouseRef-8.