Project description:rs08-04_wat1-ralstonia - ralstonia infection - identification of the role of the plant cell wall in the interactions between plants and pathogenic agents - Comparison between the mutant and the wt at different time after infection with ralstonia bacteria Keywords: treated vs untreated comparison
Project description:rs08-04_wat1-ralstonia - ralstonia infection - identification of the role of the plant cell wall in the interactions between plants and pathogenic agents - Comparison between the mutant and the wt at different time after infection with ralstonia bacteria Keywords: treated vs untreated comparison 20 dye-swap - CATMA arrays
Project description:Bacterial wilt caused by Ralstonia solanacearum is a serious seed/soil borne disease that causes severe yield and quality losses in many plants. In order to understand the change in genome expression of inculated plants, microarray analysis were performed. Twenty one days old roots of Arabidopsis Col-0 were inoculated with Ralstonia solanacearum race 4 @ 10^9 & 10^8 cfu/ml in different plants, distil water were mock inoculated, after five days plants were taken for RNA extraction and hybridization on Affymetrix microarrays. Plants were incubated in growth chamber for disease development, temperature and humidity were maintained as per plant requirement for both treated and control plants.
Project description:Bacterial wilt caused by Ralstonia solanacearum is a serious seed/soil borne disease that causes severe yield and quality losses in many plants. In order to understand the change in genome expression of inculated plants, microarray analysis were performed.
Project description:We investigated the role of A. thaliana RDRs in the RNAi-mediated viral immunity by using a mutant of cucumber mosaic virus (CMV) that does not express the VSR protein 2b. CMV contains three positive-strand genomic RNAs and the 2b protein encoded by RNA2 is essential for infection by suppressing antiviral silencing initiated by either DCL4 or DCL2. Our results demonstrate an essential role for the amplification of viral siRNAs by either RDR1 or RDR6 in antiviral silencing. Further analyses, including Illumina sequencing of more than 3.5 million viral siRNAs, indicated target specificity of the two antiviral RDRs.