Project description:This SuperSeries is composed of the following subset Series: GSE19111: Conservation genomics of Atlantic salmon (Year One) GSE19119: Conservation genomics of Atlantic salmon (Year Two) Refer to individual Series
Project description:SALARECON links the Atlantic salmon genome to metabolic fluxes and growth, focusing on energy, amino acid, and nucleotide metabolism.
Project description:Due to difficulties inherent in designating conservation units for effective species management and conservation, the use of multiple complementary sources of information is required to identify and assess the designation of conservation units based on the degree of variation among populations within a species. In this study, we combined estimates of microsatellite and transcriptomic variation to assess the population structure and potential for adaptive variation of threatened Atlantic salmon, Salmo salar, among rivers in the Bay of Fundy. In general, population structure identified by genetic differentiation was consistent with the patterns of variation in gene expression. Both data sets provided clear indication of strong regional differentiation between rivers located within the inner Bay of Fundy relative to rivers located within the outer Bay of Fundy or the Southern Uplands region. There was also support for more refined population structure; there was some differentiation in both microsatellite and gene expression patterns between salmon from rivers in the two regions of the inner Bay of Fundy: Chignecto Bay and Minas Basin. Consistent patterns apparent in the genetic and transcriptomic dataset indicate that Atlantic salmon populations from the inner and outer Bay of Fundy reflect unique genetic lineages, with some evidence of unique genetic legacies between regions of the inner Bay of Fundy, and even between individual rivers within a region. Consistency of the microarray data across two years helps to validate the use of this technique as a useful tool in assessment of variation among wild populations for species conservation.
Project description:Due to difficulties inherent in designating conservation units for effective species management and conservation, the use of multiple complementary sources of information is required to identify and assess the designation of conservation units based on the degree of variation among populations within a species. In this study, we combined estimates of microsatellite and transcriptomic variation to assess the population structure and potential for adaptive variation of threatened Atlantic salmon, Salmo salar, among rivers in the Bay of Fundy. In general, population structure identified by genetic differentiation was consistent with the patterns of variation in gene expression. Both data sets provided clear indication of strong regional differentiation between rivers located within the inner Bay of Fundy relative to rivers located within the outer Bay of Fundy or the Southern Uplands region. There was also support for more refined population structure; there was some differentiation in both microsatellite and gene expression patterns between salmon from rivers in the two regions of the inner Bay of Fundy: Chignecto Bay and Minas Basin. Consistent patterns apparent in the genetic and transcriptomic dataset indicate that Atlantic salmon populations from the inner and outer Bay of Fundy reflect unique genetic lineages, with some evidence of unique genetic legacies between regions of the inner Bay of Fundy, and even between individual rivers within a region. Consistency of the microarray data across two years helps to validate the use of this technique as a useful tool in assessment of variation among wild populations for species conservation.
Project description:Due to difficulties inherent in designating conservation units for effective species management and conservation, the use of multiple complementary sources of information is required to identify and assess the designation of conservation units based on the degree of variation among populations within a species. In this study, we combined estimates of microsatellite and transcriptomic variation to assess the population structure and potential for adaptive variation of threatened Atlantic salmon, Salmo salar, among rivers in the Bay of Fundy. In general, population structure identified by genetic differentiation was consistent with the patterns of variation in gene expression. Both data sets provided clear indication of strong regional differentiation between rivers located within the inner Bay of Fundy relative to rivers located within the outer Bay of Fundy or the Southern Uplands region. There was also support for more refined population structure; there was some differentiation in both microsatellite and gene expression patterns between salmon from rivers in the two regions of the inner Bay of Fundy: Chignecto Bay and Minas Basin. Consistent patterns apparent in the genetic and transcriptomic dataset indicate that Atlantic salmon populations from the inner and outer Bay of Fundy reflect unique genetic lineages, with some evidence of unique genetic legacies between regions of the inner Bay of Fundy, and even between individual rivers within a region. Consistency of the microarray data across two years helps to validate the use of this technique as a useful tool in assessment of variation among wild populations for species conservation. Atlantic salmon samples used in this analysis were collected from Mactaquac and Coldbrook Biodiversity Centres on the east coast of Canada. In year one, eight individuals were hybridized per strain (five strains; 40 individuals in total). This design incorporated dye-swap replicates in which two slides were hybridized with the same pair of individuals, but the dyes were swapped for one of the slides. Therefore, in year one a total of 40 slides were used. Because of the large number of strains assessed in year two (12), dyes were balanced across slides to maximize biological replication. Six individuals were hybridized per strain; three of these were labelled with Cy3, and three were labelled with Cy5 (for a total of 36 arrays in year two).
Project description:Due to difficulties inherent in designating conservation units for effective species management and conservation, the use of multiple complementary sources of information is required to identify and assess the designation of conservation units based on the degree of variation among populations within a species. In this study, we combined estimates of microsatellite and transcriptomic variation to assess the population structure and potential for adaptive variation of threatened Atlantic salmon, Salmo salar, among rivers in the Bay of Fundy. In general, population structure identified by genetic differentiation was consistent with the patterns of variation in gene expression. Both data sets provided clear indication of strong regional differentiation between rivers located within the inner Bay of Fundy relative to rivers located within the outer Bay of Fundy or the Southern Uplands region. There was also support for more refined population structure; there was some differentiation in both microsatellite and gene expression patterns between salmon from rivers in the two regions of the inner Bay of Fundy: Chignecto Bay and Minas Basin. Consistent patterns apparent in the genetic and transcriptomic dataset indicate that Atlantic salmon populations from the inner and outer Bay of Fundy reflect unique genetic lineages, with some evidence of unique genetic legacies between regions of the inner Bay of Fundy, and even between individual rivers within a region. Consistency of the microarray data across two years helps to validate the use of this technique as a useful tool in assessment of variation among wild populations for species conservation. Atlantic salmon samples used in this analysis were collected from Mactaquac and Coldbrook Biodiversity Centres on the east coast of Canada. In year one, eight individuals were hybridized per strain (five strains; 40 individuals in total). This design incorporated dye-swap replicates in which two slides were hybridized with the same pair of individuals, but the dyes were swapped for one of the slides. Therefore, in year one a total of 40 slides were used. Because of the large number of populations assessed in year two (12), dyes were balanced across slides to maximize biological replication. Six individuals were hybridized per strain; three of these were labelled with Cy3, and three were labelled with Cy5 (for a total of 36 arrays in year two).
Project description:This study investigates host-specific gene expression of the Pacific salmon lice, Lepeophtheirus salmonis oncorhynchii, while parasitizing a resistant host (Coho salmon), two susceptible hosts (Atlantic salmon, Sockeye salmon), and a population with-held hosts (starved), over 48 hrs.
Project description:ISAV is one of the most dangerous pathogens causing high mortality of farmed Atlantic salmon. In this study, transcriptome responses to the virus were examined in vitro in Atlantic salmon head kidney cells culture (ASK). Poly(I:C), synthetic double-stranded RNA stimulating antiviral responses was used as a positive control.