Project description:Iron deficiency is a yield-limiting factor and a worldwide problem for crop production in many agricultural regions, particularly in aerobic and calcareous soils. Graminaceous species, like maize, improve Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the following uptake of Fe(III)-PS complexes through specific transporters. Transcriptional profile obtained by roots 12-d-old maize plants under Fe starvation for 1 week (Fe-deficient; 19-d-old plants) were compared with the transcriptional profile obtained by roots of 12-d-old maize plants grown in a nutrient solution containing 100 μM Fe-EDTA for 1 week (Fe-sufficient; 19-d-old plants).
Project description:Phosphorus, in its orthophosphate form (Pi), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole genome molecular mechanisms contributing to plant acclimation to Pi deficiency remain largely unknown. White lupin (Lupinus albus L.) has evolved unique adaptations for growth in Pi deficient soils including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to Pi supply. We de novo assembled 277,224,180 Illumina reads from 12 cDNA libraries to build the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences 50,734 were transcriptionally active (RPKM = 3) representing approximately 7.8% of the Lupinus albus genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to Pi deficiency with a = 2-fold change and a p-value = 0.05. Twelve sequences were consistently differentially expressed due to Pi deficiency stress in three species, making them ideal candidates to monitor the Pi status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in Pi deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to Pi deficiency. Examination of 2 different tissue types (roots and leaves) under phosphorus (P) -sufficient or P-deficient condition with 3 biological replications per condition in white lupin (Lupinus albus).
Project description:Four sRNA libraries were generated and sequenced from the early developmental stage of primary roots (PRY), the later developmental stage of maize primary roots (PRO), seminal roots (SR), and crown roots (CR). Through integrative analysis, we identified 501 miRNAs (246 conserved and 255 novel ones) and found that the expression patterns of miRNAs differed dramatically in different maize roots.
Project description:Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to P(i) supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to P(i) deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to P(i) deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the P(i) status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in P(i) deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to P(i) deficiency.
Project description:We found that primary root (PR) is more resistant to salt stress compared with crown roots (CR) and seminal roots (SR). To understand better salt stress responses in maize roots, six RNA libraries were generated and sequenced from primary root (PR), primary roots under salt stress (PR-salt) , seminal roots (SR), seminal roots under salt stress (SR-salt), crown roots (CR), and crown roots under salt stress (CR-salt). Through integrative analysis, we identified 444 genes regulated by salt stress in maize roots, and found that the expression patterns of some genes and enzymes involved in important pathway under salt stress, such as reactive oxygen species scavenging, plant hormone signal perception and transduction, and compatible solutes synthesis differed dramatically in different maize roots. 16 of differentially expressed genes were selected for further validation with quantitative real time RT-PCR (qRT-PCR).We demonstrate that the expression patterns of differentially expressed genes are highly diversified in different maize roots. The differentially expressed genes are correlated with the differential growth responses to salt stress in maize roots. Our studies provide deeper insight into the molecular mechanisms about the differential growth responses of different root types in response to environmental stimuli in planta.
Project description:Chilling is a major stress to plants of subtropical and tropical origins including maize. To reveal molecular mechanisms underlying chilling tolerance and chilling survival, we investigated maize transcriptome responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity for survival. Chilling stress on maize shoots and roots is found to each contribute to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacity reveals that chilling survival in maize is highly associated with upregulation in leaves and crowns of abscisic acid response pathway, transcriptional regulators and cold response as well as downregulation of heat response in crowns. Comparison of chilling treatment on whole and part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental perception. In sum, this study details chilling responses in leaves, roots and crowns and reveals potential chilling survival mechanism in maize, which lays ground for further understanding survival and tolerance mechanisms under low but non-freezing temperatures in tropical and subtropical plants.
Project description:Four sRNA libraries were generated and sequenced from the early developmental stage of primary roots (PRY), the later developmental stage of maize primary roots (PRO), seminal roots (SR), and crown roots (CR). Through integrative analysis, we identified 501 miRNAs (246 conserved and 255 novel ones) and found that the expression patterns of miRNAs differed dramatically in different maize roots. we generated and sequenced four maize small RNA libraries from the early developmental stage of primary roots (PRY), the later developmental stage of maize primary roots (PRO), seminal roots (SR), and crown roots (CR) using Solexa high-throughput sequencing technology
Project description:The five FFC strains analyzed are able to penetrate maize roots and grow invasively, the efficiency of this growth as well as the ability to subsequently grow in other parts of maize plants differ significantly. To gain insight into these differences, we examined the transcriptome of the five isolates in infected maize roots with that of in vitro (CM agar) growing fungi by a RNA sequencing approach.
Project description:Purpose: The goal of this analysis is that to reveal the different expression pattern in chilling-tolerant and chilling susceptible lines under chilling stress.Chilling is a major stress to plants of subtropical and tropical origins including maize. To reveal molecular mechanisms underlying chilling tolerance and chilling survival, we investigated maize transcriptome responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity for survival. Chilling stress on maize shoots and roots is found to each contribute to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacity reveals that chilling survival in maize is highly associated with upregulation in leaves and crowns of abscisic acid response pathway, transcriptional regulators and metal ion transporters as well as downregulation of heat response in crowns. Comparison of chilling treatment on whole and part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental perception. In sum, this study details chilling responses in leaves, roots and crowns and reveals potential chilling survival mechanism in maize, which lays ground for further understanding survival and tolerance mechanisms under low but non-freezing temperatures in tropical and subtropical plants.
Project description:Aluminum (Al) toxicity is a major factor limiting crop yields on acid soils. In maize, Al tolerance is a complex phenomenon involving multiple genes and physiological mechanisms yet uncharacterized. To begin elucidating the molecular basis of maize Al toxicity and tolerance, we performed a detailed temporal analysis of root gene expression under Al stress using microarrays with an Al-tolerant and an Al-sensitive maize genotype. Seedlings of both genotypes were grown in hydroponics in a full nutrient solution containing 39uM of free Al3+ activity. Root samples were collected at 'time zero', and after 2, 6 and 24 hours of treatment. Keywords: stress treatment, time course