Project description:Chromosomal instability in gastric cancer cells is associated with the amplification of oncogenes that encode receptor tyrosine kinases (RTKs), such as HER2 and FGFR2; such gene amplification varies from cell to cell and manifests as genetic heterogeneity within tumours. The intratumoural genetic heterogeneity of RTK gene amplification causes heterogeneity in RTK protein expression, which has been suggested to be associated with therapeutic resistance to RTK inhibitors; however, the underlying mechanism is not fully understood. Here, we show that extrachromosomal DNA (ecDNA) causes intratumoural genetic heterogeneity in RTKs and drug resistance due to diverse dynamic changes. We analysed the dynamics of FGFR2 and MYC ecDNA in a gastric cancer cell line after single-cell cloning. Similar to those in parental cells, the copy numbers of FGFR2 and MYC in subclones differed significantly between cells, indicating intraclonal genetic heterogeneity. Furthermore, the ecDNA composition differed between subclones, which affected FGFR2 protein expression and drug sensitivity. Interestingly, clone cells that were resistant to the FGFR2 inhibitor AZD4547 presented diverse changes in ecDNA, including chimeric ecDNA, large ecDNA and increased ecDNA numbers; these changes were associated with high expression and rephosphorylation of FGFR2. Conversely, when resistant clone cells were cultured under conditions that excluded AZD4547, the ecDNA status became similar to that of the original clone cells, and the inhibitory effect on cell growth was restored. Our results show that dynamic quantitative and qualitative changes in ecDNA can drive the intratumoural genetic heterogeneity of RTKs and resistance to RTK inhibitors.
Project description:Chromosomal instability in gastric cancer cells is associated with the amplification of oncogenes that encode receptor tyrosine kinases (RTKs), such as HER2 and FGFR2; such gene amplification varies from cell to cell and manifests as genetic heterogeneity within tumours. The intratumoural genetic heterogeneity of RTK gene amplification causes heterogeneity in RTK protein expression, which has been suggested to be associated with therapeutic resistance to RTK inhibitors; however, the underlying mechanism is not fully understood. Here, we show that extrachromosomal DNA (ecDNA) causes intratumoural genetic heterogeneity in RTKs and drug resistance due to diverse dynamic changes. We analysed the dynamics of FGFR2 and MYC ecDNA in a gastric cancer cell line after single-cell cloning. Similar to those in parental cells, the copy numbers of FGFR2 and MYC in subclones differed significantly between cells, indicating intraclonal genetic heterogeneity. Furthermore, the ecDNA composition differed between subclones, which affected FGFR2 protein expression and drug sensitivity. Interestingly, clone cells that were resistant to the FGFR2 inhibitor AZD4547 presented diverse changes in ecDNA, including chimeric ecDNA, large ecDNA and increased ecDNA numbers; these changes were associated with high expression and rephosphorylation of FGFR2. Conversely, when resistant clone cells were cultured under conditions that excluded AZD4547, the ecDNA status became similar to that of the original clone cells, and the inhibitory effect on cell growth was restored. Our results show that dynamic quantitative and qualitative changes in ecDNA can drive the intratumoural genetic heterogeneity of RTKs and resistance to RTK inhibitors.
Project description:RNA transcriptome sequencing analysis was performed in SNU-668 Erastin-resistant cells and SNU-668 parental cells, SNU-484 RSL3-resistant cells and SNU-484 parental cells
Project description:Transcriptional profiling of human hepatocarcinoma comparing Huh-7 and SNU-739. Two-condition experiment, normalized ratio represented by Huh-7/SNU-739. Biological replicates: 2 Huh-7 replicates, 2 SNU-739 replicates.
Project description:Our goal of this study was to perform quantitative and global assessment of EBV gene expression in gastric carcinomas and assess EBV associated cellular pathway alterations. Examination of a gastric carcinoma cell line naturally infected with EBV, SNU-719 using poly-A and ribodepletion RNA-seq data sets
Project description:a microarray analysis of long noncoding RNAs was performed in exosomes from SNU-668 Erastin-resistant cells and parental SNU-668 cells
Project description:We investigate the expression of miRNA in exosome of EBV-positive gastric carcinoma cells. The exosomes of EBV-positive and negative gastric carcinoma cells were separated by ultracentrifugation, the morphology of exosomes was identified by transmission electron microscopy, the exosome size was analyzed by Nanosight, and the expression of exosome membrane protein CD63 and CD81 was detected by western blot. High-throughput sequencing was used to detect miRNA expression profiles in gastric cancer cell lines and their exosomes. Under the ultra-microscopic electron microscope, the exosomes are seen as a typical translucent cup-like structure or a flat spherical structure. The nanoparticle tracking analyzer (Nanosight) showed that the exosomes were between 30 and 150 nm in diameter. Western blot(WB) assays showed that exosomes secreted by EBVaGC and EBVnGC cells expressed specific exosome membrane-associated proteins CD63 and CD81. High-throughput sequencing revealed that EBVaGC(SNU-719) and EBVnGC(AGS) and their secreted exosomes were highly expressed with certain human miRNAs, among which AGS-exo was highly expressed with hsa-miR-23b-3p, hsa-miR-320a-3p, and hsa-miR-4521. SNU-719-exo was highly expressed as hsa-miR-21-5p, hsa-miR-148a-3p and hsa-miR-7-5p. Nearly all EBV-related miRNAs (EBV-miRNA) were expressed in SNU-719 cells and their exosomes, among which EBV-miR-BART1-5p, EBV-miR-BART17-3p and EBV-miR-BART18-5p were the highest in SNU-719 cells, EBV-miR-BART1-5p, EBV-miR-BART18-5p and EBV-miR-BART17-3p were the highest in SNU-719-exo.
Project description:Background and aims: The aim of this study was to analyze the molecular characteristics of adenocarcinoma of the gastroesophageal junction (AGEJ) compared to esophageal (EAC) and gastric adenocarcinomas (GCFB) from The Cancer Genome Atlas (TCGA) and Seoul National University (SNU) cohorts using next-generation sequencing. Methods: Based on mRNA expression of EAC (n=78) and GCFB (n=102) from the TCGA cohort, a molecular classification model using the Bayesian compound covariate predictor classified AGEJ/cardia (n=48) from the TCGA cohort and AGEJ/upper third gastric adenocarcinoma (n=46) from the SNU cohort into the EAC-like or GCFB-like groups. The molecular characteristics between the EAC-like and GCFB-like groups were compared.