Project description:DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hy- brids displayed nonadditive DNA methylation levels, termed meth- ylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differ- entially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interac- tions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. Whole genome bisulfite sequencing and small RNA sequencing of the wild type and nrpd1nrpe1 double mutant background of parent Col ,C24, the hybrid ColXC24 and C24XCol to explore the role of the RdDM pathway in DNA methylation interactions.
Project description:Directed evolution in mammalian cells can facilitate the engineering of mammalian-compatible biomolecules and can enable synthetic evolvability for mammalian cells. We engineered an orthogonal alphaviral RNA replication system to evolve synthetic RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in live mammalian cells. Using REPLACE, we attempted continuous intracellular evolution of the negative dominant mutant KRAS (S17N). To analyze the process of mutation accumulation, we performed amplicon sequencing on experimental materials at different stages and under different treatment conditions. The results indicated that the mutations generated by this system were primarily induced by Monanunavir, and the addition of Monanunavir significantly accelerated the rate of evolution.
Project description:Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq) to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign. There are 20 samples in total. These consist of 10 FAIRE-seq samples, specifically 6 haploid samples, S. cerevisiae strain UWOPS05_217_3 replicates 1 and 2, S. cerevisiae strain DBVPG1373 replicates 1 and 2, and S. paradoxus strain CBS432 replicates 1 and 2. There are also 4 diploid hybrid samples, hybrid between S. cerevisiae strain UWOPS05_217_3 and S. paradoxus strain CBS432 replicates 1 and 2, and the hybrid between S. cerevisiae strain DBVPG1373 and S. paradoxus strain CBS432 replicates 1 and 2. There are also RNA-seq samples for each of these 10 samples.
Project description:Directed evolution in mammalian cells can facilitate the engineering of mammalian-compatible biomolecules and can enable synthetic evolvability for mammalian cells. We engineered an orthogonal alphaviral RNA replication system to evolve synthetic RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in live mammalian cells. we employed REPLACE to drive the continuous intracellular evolution of the cancer-related protein MEK1 with the aim of conferring resistance to Cobimetinib. To investigate the accumulation of mutations during this evolutionary process, we conducted amplicon sequencing on experimental materials collected at different stages. The results revealed intricate relationships among different mutations, highlighting the complex nature of the evolutionary landscape.
2024-07-07 | GSE235328 | GEO
Project description:Directed evolution of CRISPR-Cas9 to increase its specificity
Project description:The ability to detect and target β cells in vivo can drastically refine the way diabetes is studied and treated. By an unsupervised Systematic evolution of ligands by exponential enrichment (SELEX) we identified two RNA aptamers that specifically recognize mouse and human β cells in vitro and in vivo. Here we took advantage of commercially available high density protein arrays to identify putative target of the two islet specific aptamers. Briefly, 5' biotynilated RNA aptamer 1-717 and m12-3773 were chemically produced , complexed with Alexafluor 647-streptavidin and used as probe on the HuProt™ v2.0 19K protein array. Putative binders were further confirmed by cold target inhibition assays, silencing experiments, and surface plasmon resonance.
Project description:Genomic surveys of yeast hybrid species isolated from the wild and from human-related environment, aimed at the reconstruction of the natural evolution of Saccharomyces spp. evolution
Project description:Noncoding RNAs (ncRNAs) comprise an important class of natural regulators that mediate a vast array of biological processes, including the modulation of chromatin architecture. Moreover, artificial ncRNAs have revealed that the functional capabilities of RNA are extremely broad. To further investigate and harness these capabilities, we developed CRISPR-Display ("CRISP-Disp"), a targeted localization strategy that uses Cas9 to deploy large RNA cargos to specific DNA loci. We demonstrate that exogenous RNA domains can be functionally appended onto the CRISPR scaffold at multiple insertion points, allowing the construction of Cas9 complexes with RNAs nearing one kilobase in length, with structured RNAs, protein-binding cassettes, artificial aptamers and pools of random sequences. CRISP-Disp also allows the simultaneous multiplexing of disparate functions at multiple targets. We anticipate that this technology will provide a powerful method with which to ectopically localize functional RNAs and ribonuceloprotein complexes at specified genomic loci. RNA Immunoprecipitation (RIP) against FLAG-tagged Cas9 protein, coexpressed with a large pool of CRISPR RNAs bearing random internal insertions