Project description:Disentangling the factors underlying the diversification of geographically variable species with a wide geographical range is essential to understanding the initial stages and drivers of the speciation process. The Amazilia Hummingbird, Amazilis amazilia, is found along the Pacific coast from northern Ecuador down to the Nazca Valley of Peru, and is currently classified as six phenotypically differentiated subspecies. We aimed to resolve the evolutionary relationships of the six subspecies, to assess the geographical pattern and extent of evolutionary divergence, and to test for introgression using both a mtDNA marker and a genome-by-sequencing dataset from 86 individuals from across the species range. The consensus phylogenetic tree separated the six subspecies into three distinct clades, corresponding with the Ecuador lowlands (A. amazilia dumerilii), the Ecuador highlands (A. amazilia alticola and A. amazilia azuay), and the Peruvian coast (A. amazilia leucophoea, A. amazilia amazilia, and A. amazilia caeruleigularis). However, an unresolved mtDNA network suggests that the diversification of the subspecies was recent and rapid. We found evidence of gene flow among the subspecies A. amazilia dumerilii, A. amazilia alticola, and A. amazilia leucophoea, with strong genetic isolation of the subspecies A. amazilia azuay in the isolated Yunguilla Valley of Ecuador. Finally, environmental data from each subspecies' capture locations were concordant with the three distinct clades. Overall, our results suggest that both expansions into new habitats and geographic isolation shaped the present-day phylogeny and range of the A. amazilia subspecies, and that A. amazilia azuay may be genetically divergent enough to be considered a separate species.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.