Project description:To explore the regulatory mechanism of intestinal flora in Citrobacter rodentium -induced intestinal infection by transcriptome analysis at miRNA molecular level.
Project description:Background: Mesenchymal stem cells (MSCs) can be acquired from medical waste. MSCs are easily expanded and have multiple functions, including anti-inflammatory effects. We evaluated the effects of human adipose tissue-derived MSCs (AD-MSCs) and umbilical cord tissue-derived MSCs (UC-MSC) in a dextran sulfate sodium (DSS)-induced mouse model. Methods: Human AD-MSCs and UC-MSCs (1 × 106 cells) were injected intravenously into a 7-day DSS-induced colitis model. The therapeutic effects of cell origin, injection timing, and supernatants obtained from MSC cultures were evaluated. We also analyzed mRNA expression in MSCs, tissues, and intestinal flora. Results: AD-MSCs and UC-MSCs had strong anti-inflammatory effects when injected on day 3 in a mouse model. On day 11, mRNA levels of inflammatory factors in colon tissues were significantly decreased after injection of MSCs on day 3. Supernatants from MSCs culture decreased mRNA levels of tumor necrosis factor (Tnf)-α, but had reduced therapeutic effects compared with MSC cell injection. RNA sequencing using colon tissues obtained the day after cell injection revealed changes in the TNF-α/nuclear factor-κB and T-cell receptor signaling pathways. Additional analyses showed that several factors, including chromosome 10 open reading frame 54, stanniocalcin-1, and TNF receptor superfamily member 11b were increased in MSCs after adding serum from DSS colitis mice. Furthermore, both AD-MSCs and UC-MSCs maintained the balance of intestinal flora. Conclusion: AD-MSCs and UC-MSCs showed therapeutic effects against inflammation after early cell injection while maintaining the intestinal flora. Although supernatants showed therapeutic effects, cell injection was more effective against inflammation.
Project description:Background: Mesenchymal stem cells (MSCs) can be acquired from medical waste. MSCs are easily expanded and have multiple functions, including anti-inflammatory effects. We evaluated the effects of human adipose tissue-derived MSCs (AD-MSCs) and umbilical cord tissue-derived MSCs (UC-MSC) in a dextran sulfate sodium (DSS)-induced mouse model. Methods: Human AD-MSCs and UC-MSCs (1 × 106 cells) were injected intravenously into a 7-day DSS-induced colitis model. The therapeutic effects of cell origin, injection timing, and supernatants obtained from MSC cultures were evaluated. We also analyzed mRNA expression in MSCs, tissues, and intestinal flora. Results: AD-MSCs and UC-MSCs had strong anti-inflammatory effects when injected on day 3 in a mouse model. On day 11, mRNA levels of inflammatory factors in colon tissues were significantly decreased after injection of MSCs on day 3. Supernatants from MSCs culture decreased mRNA levels of tumor necrosis factor (Tnf)-α, but had reduced therapeutic effects compared with MSC cell injection. RNA sequencing using colon tissues obtained the day after cell injection revealed changes in the TNF-α/nuclear factor-κB and T-cell receptor signaling pathways. Additional analyses showed that several factors, including chromosome 10 open reading frame 54, stanniocalcin-1, and TNF receptor superfamily member 11b were increased in MSCs after adding serum from DSS colitis mice. Furthermore, both AD-MSCs and UC-MSCs maintained the balance of intestinal flora. Conclusion: AD-MSCs and UC-MSCs showed therapeutic effects against inflammation after early cell injection while maintaining the intestinal flora. Although supernatants showed therapeutic effects, cell injection was more effective against inflammation.
Project description:Folic acid deficiency is common worldwide and is linked to intestinal flora imbalance. The intestinal microbial utilization of folic acid based on model animals faces the challenges of repeatability and individual variability. In this study, we built an in vitro fecal slurry culture model deficient in folic acid. We examined the effects of supplementation with different forms of folic acid (5-methyltetrahydrofolate and non-reduced folic acid) on the modulation of intestinal flora. 16S rDNA gene sequencing showed alpha diversity increased after folic acid supplementation compared to fermentation samples with folic acid deficiency. In the non-reduced folic acid (FA) group, the relative abundance of the Firmicutes phylum dropped to 56.7%, whereas in the 5-methyltetrahydrofolate (MTHF) supplementation group, it grew to 64.9%. Lactobacillus genera became more prevalent, reaching 22.8% and 30.8%, respectively. Additionally, Bifidobacterium and Pedioccus, two common probiotic bacteria, were in higher abundance. Short-chain fatty acids (SCFAs) analysis showed that supplementation with folic acid (non-reduced folic acid, 5-methyltetrahydrofolate) decreased acetic acid and increased the fermentation yield of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a human folic acid deficiency model for studying intestinal microbiota and demonstrated that both 5-methyltetrahydrofolate and non-reduced folic acid have effects on the regulation of intestinal microecology.
2024-03-01 | GSE227224 | GEO
Project description:MP108 effects on hemolytic jaundice rat intestinal flora
| PRJNA1143884 | ENA
Project description:Effects of gentamicin exposure on human intestinal flora
| PRJNA637801 | ENA
Project description:Effects of oxygen - rich conditions on intestinal flora