Project description:We have sequenced a wild Prunus mume and constructed a reference sequence for this genome. In order to improve quality of gene models, RNA samples of five tissues (bud, leaf, root, stem, fruit) were extracted from the Prunus mume. To investigate tissue specific expression using the reference genome assembly and annotated genes, we extracted RNA samples of different tissues and conducted transcriptome sequencing and DEG analysis. Five RNA pools were created corresponding to different tissues of the Prunus mume.
Project description:We have sequenced a wild Prunus mume and constructed a reference sequence for this genome. In order to improve quality of gene models, RNA samples of five tissues (bud, leaf, root, stem, fruit) were extracted from the Prunus mume. To investigate tissue specific expression using the reference genome assembly and annotated genes, we extracted RNA samples of different tissues and conducted transcriptome sequencing and DEG analysis.
Project description:The experiment was performed in a commercial sweet cherry (cv. Tsolakeika, Prunus avium L.) orchard in North Greece (Edessa) during 2017 growing season. The orchard contained 10-years old trees, planted at 5x5 m spacing between rows and along the row, grafted onto Mahaleb cherry (Prunus mahaleb L.) rootstock, trained in open vase and subjected to standard cultural practices. Three foliar sprays (0.5% or 35 mM CaCl2) were performed at 15, 27 and 37 days after full blossom (DAFB). Cherry fruits (exocarp plus mesocarp tissues) were sampled in two developmental stages, namely at full red color (44 DAFB, S4 stage) and at commercial harvest (55 DAFB, S5 stage). Three biological replicates of 20-fruit sub-lots in control and Ca-treated fruits were frozen in liquid nitrogen, grinding in fine powder and stored at -80 ⁰C for proteomic processing.
Project description:Pistil development is an important developmental process that directly affects the yield of Prunus sibirica. Through transcriptome sequencing analysis of clones with abortive pistil (No. 595) and normal pistil (No. 28) of Prunus sibirica, a total of 1950 significantly differentially expressed genes were obtained, among which 1000 genes were up-regulated and 950 genes were down-regulated. The results provide a theoretical basis for further investigation of the formation mechanism of pistil abortion.