Project description:[original title] Gene expression response to the implantation of drug (paclitaxel)-eluting or bare metal stents in denuded human LIMA arteries. Different clinical outcomes have been observed for paclitaxel-eluting and bare metal cardiovascular stents. The aim of this project was to identify genes that might be associated with the observed clinical outcomes.
Project description:[original title] Gene expression response to the implantation of drug (paclitaxel)-eluting or bare metal stents in denuded human LIMA arteries. Different clinical outcomes have been observed for paclitaxel-eluting and bare metal cardiovascular stents. The aim of this project was to identify genes that might be associated with the observed clinical outcomes. Human left internal mammary artery (LIMA) was divided into three segments and and two of the segments were fitted with either a paclitaxel-eluting stent or a bare metal stent. The experiment includes three groups: control, paclitaxel-eluting stent, and bare metal stent, respectively. Each group includes four biological replicates (patients 1, 2, 4 and 5).
Project description:An unanticipated complication of the use of bare metal stents in percutaneous transluminal coronary angioplasty is in-stent restenosis resulting in >50% late lumen diameter loss in treated patients. In an effort to reduce in-stent restenosis, drug eluting stents containing the immunosuppressant sirolimus or zotarolimus have recently been developed. We report here the molecular response of arterial tissue to the implanting of these drug-eluting stents. Gene expression profiling was performed on 4 artery segments surrounding bare metal stents (BMS), 4 artery segments surrounding sirolimus-eluting stents (SES), and 4 artery segments surrounding zotarolimus-eluting stents (ZES) implanted into porcine animal models for 28 days.
Project description:Bare-metal (BMS) and drug-eluting stents (DES) were implanted in pig coronary arteries with an overstretch during coronary angioplasty under optical coherence tomography guidance. Arteries subjected to plain old balloon angioplasty (POBA) alone served as controls. Stented/balloon dilated segments were harvested 1, 3, 7, 14 and 28 days post-intervention for proteomics analysis. At day 28 all stented arteries showed a neointima formation covering the stent struts. The evolved neointima was separated from the media and analysed in a separate proteomics analysis. In total, 31 samples were analysed for the media by LC-MS/MS (n=3 BMS/DES at each time-point 1, 3, 7 and 28 days; n=4 POBA early [day1-day3] and n=3 POBA late [day 14 - day28]). For the neointima a total of 14 samples were analysed (n=7 BMS, n=7 DES at 28 days) including the neointima of arteries of a second cohort with 4 samples each for BMS and DES day 28. The neointima samples were run in duplicates.
Project description:An unanticipated complication of the use of bare metal stents in percutaneous transluminal coronary angioplasty is in-stent restenosis resulting in >50% late lumen diameter loss in treated patients. In an effort to reduce in-stent restenosis, drug eluting stents containing the immunosuppressant sirolimus or zotarolimus have recently been developed. We report here the molecular response of arterial tissue to the implanting of these drug-eluting stents.
Project description:Bare Metal Stents (BMS), Drug Eluting Stent (DES) and Exosomes Eluting Stent (EES) were placed in rat abdominal aorta for one week. Then total RNA of aortas was extracted. We used ScienCell's GeneQuery Rat Macrophage Polarization Markers qPCR Array Kit to quantitate gene expression of macrophage relevant genes.
Project description:Acquired drug resistance represents a major challenge in chemo-therapy treatment for various types of cancers. We have found that the retinoid X receptorâselective agonist bexarotene (LGD1069, Targretin) was efficacious in treating chemo-resistant cancer cells. The goal of this microarray study was to understand the mechanism of bexaroteneâs role in overcoming acquired drug resistance using human breast cancer cells MDA-MB-231 as a model system and paclitaxel as model compound. After MDA-MB-231 cells were repeatedly treated with paclitaxel for 8 cycles with each cycle including a 3-day treatment with 30 nM paclitaxel and followed by a 7-day exposure to control medium, MDA cells resistant to paclitaxel were developed and their growth was no longer inhibited by paclitaxel treatment. Those MDA cells with acquired drug resistance, when treated with paclitaxel and bexarotene in combination, could regain their sensitivity and their growth were again inhibited. Therefore, RNA samples from parental MDA-MB-231 cells, paclitaxel-resistant MDA cells treated with vehicle, paclitaxel alone or in combination with bexarotene, were used for perform global gene expression profiling with Affymetrix HG-U133A gene chips. Keywords: Drug Treatment MDA-MB-231 cells were exposed to regimens on a 10-day cycle: a 3-day treatment with 30 nM paclitaxel and followed by a 7-day exposure to control medium. Paclitaxel resistant MDA-MB-231 cells (MDA-PR) were established within 8 cycles of such treatment (80 days). These MDA-PR cells were then treated with vehicle control, paclitaxel along, or the combination of 30 nM paclitaxel ( 3 days on and 7 days off) and 1 µM Targretin (10 days on) in a new 10-day cycle for 3 months. Thus, there are four treatment groups, parent MDA cells, MDA-PR, MDA-PR treated with paclitaxel, MDA-PR treated with paclitaxel and bexarotene, and each group had four biological replicates.
Project description:Acquired drug resistance represents a major challenge in chemo-therapy treatment for various types of cancers. We have found that the retinoid X receptor–selective agonist bexarotene (LGD1069, Targretin) was efficacious in treating chemo-resistant cancer cells. The goal of this microarray study was to understand the mechanism of bexarotene’s role in overcoming acquired drug resistance using human breast cancer cells MDA-MB-231 as a model system and paclitaxel as model compound. After MDA-MB-231 cells were repeatedly treated with paclitaxel for 8 cycles with each cycle including a 3-day treatment with 30 nM paclitaxel and followed by a 7-day exposure to control medium, MDA cells resistant to paclitaxel were developed and their growth was no longer inhibited by paclitaxel treatment. Those MDA cells with acquired drug resistance, when treated with paclitaxel and bexarotene in combination, could regain their sensitivity and their growth were again inhibited. Therefore, RNA samples from parental MDA-MB-231 cells, paclitaxel-resistant MDA cells treated with vehicle, paclitaxel alone or in combination with bexarotene, were used for perform global gene expression profiling with Affymetrix HG-U133A gene chips. Keywords: Drug Treatment
Project description:The transcriptional plasticity of cancer cells promotes intercellular heterogeneity in response to anti-cancer drugs and facilitates the generation of subpopulation surviving cells. Characterizing single-cell transcriptional heterogeneity after drug treatments can provide mechanistic insights into drug efficacy. Here we used single-cell RNA sequencing (scRNA-seq) to examine transcriptomic profiles of cancer cells treated with chemotherapy drug paclitaxel, anti-inflammatory drug celecoxib, and the combination of the two drugs. By normalizing the expression of endogenous genes to spike-in molecules, we found that global mRNA abundance shows dynamic regulation across single cells after drug treatment. Using a random forest model, we identified gene signatures classifying single cells into three states: transcriptional repression, amplification, and control-like. Treatment with paclitaxel or celecoxib alone generally repressed gene transcription at variable levels across single cells. Interestingly, the combination of the two drugs resulted in transcriptional amplification and hyperactivation of the mitochondrial oxidative phosphorylation pathway, which is linked to enhanced cell killing efficiency. Finally, we identified a regulatory module enriched with metabolism and inflammatory genes that was activated in a subpopulation of paclitaxel-treated cells, the expression of which predicted paclitaxel efficacy across human cancer cell lines and in vivo patient samples. Our study highlights the dynamic global transcriptional activity driving single-cell heterogeneity during drug response. The results also emphasize the importance of adding spike-in molecules to study gene expression regulation using scRNA-seq experiments.