Project description:During cold acclimation plants increase their freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many cold acclimated plants become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures. There is hardly any information available about the molecular basis of this adaptation. However, Arabidopsis thaliana is among the species that acclimate to sub-zero temperatures. This makes it possible to use the molecular and genetic tools available in this species to identify components of sub-zero signal transduction and acclimation. Here, we have used microarrays and a qRT-PCR primer platform covering 1880 genes encoding transcription factors to monitor changes in gene expression in the accessions Columbia-0, Rschew and Tenela during the first three days of sub-zero acclimation at -3°C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY transcription factors may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes were down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription were up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation. We used whole genome microarrays to monitor changes in gene expression in the Arabidopsis thaliana accessions Columbia-0, Rschew and Tenela during three days of acclimation to sub-zero temperature at -3°C after cold acclimation
Project description:Functions of Arabidopsis REI1-LIKE (REIL) proteins, two homologs of a yeast ribosome biogenesis protein (RBP) that takes part in the late cytoplasmic steps of 60S ribosomal subunit maturation, were characterized by systems analyses of the 10°C cold acclimating reil1-1 reil2-1 double mutant compared to Col-0 wildtype. The mutant lacked both REIL proteins, was strongly growth inhibited in the cold and complemented by constitutive expression of N-terminal FLUORESCENT PROTEIN (FP)-REIL1 and FP-REIL2 fusion proteins under control of the UBIQUITIN 10 promoter. Wildtype acclimation to 10°C causes relative accumulation of cytosolic ribosome subunits and rRNA. Expression of cytosolic ribosomal genes, known cytosolic RBPs, translation initiation- and elongation-factors was activated. Conserved function of Arabidopsis REIL proteins was indicated by delay of these processes in reil1-1 reil2-1, cytosolic localization of FP-REIL proteins and native REIL protein interactions with 60S containing ribosome fractions. Non-acclimated reil1-1 reil2-1 triggered plant specific metabolic and transcriptomic cold acclimation responses that included activation of the DREB/CBF-regulon with a preference for the cold acclimation factors, CBF1/DREB1B, CBF2/DREB1C, and CBF3/DREB1A. Cold-acclimating reil1-1 reil2-1 maintained cellular integrity and acquired freezing tolerance but did not activate FLOWERING LOCUS T expression in mature leaves. This block was independent of FLOWERING LOCUS C and AGAMOUS-LIKE 19 mediated vernalization. We conclude that Arabidopsis REIL proteins enhance accumulation of cytosolic ribosome subunits after cold shift and either directly or indirectly feedback on temperature perception by suppression of premature cold acclimation at optimized temperature and by triggering growth and the vegetative to generative phase transition in the cold. Transcriptomic profiling demonstrated a hidden acclimation phenotype of the morphologically inconspicuous reil1-1reil2-1 mutant under optimized temperature conditions. Premature triggering of cold acclimation, a severe growth defect at 10°C and compensation responses indicate that REIL function may extend beyond cytosolic ribosome biogenesis towards translation initiation.
Project description:In Arabidopsis, CBFs transcription factors (CBF1, CBF2 and CBF3) play fundamental roles in plant cold tolerance, especially in cold-acclimation. By employing CRISPR/Cas9, we knocked out CBF1 and CBF2 simultaneously in cbf3 background and generated cbfs triple mutant. This mutant facilitated the discovery of CBF-regulated genes. In this study, Arabidopsis 14-d-old Col-0 and cbfs mutant were treated with cold stress (4 degree centigrade) for 0, 3 and 24 hours. The seedlings were harvested for total RNA extraction and sequencing.
Project description:During cold acclimation plants increase their freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many cold acclimated plants become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures. There is hardly any information available about the molecular basis of this adaptation. However, Arabidopsis thaliana is among the species that acclimate to sub-zero temperatures. This makes it possible to use the molecular and genetic tools available in this species to identify components of sub-zero signal transduction and acclimation. Here, we have used microarrays and a qRT-PCR primer platform covering 1880 genes encoding transcription factors to monitor changes in gene expression in the accessions Columbia-0, Rschew and Tenela during the first three days of sub-zero acclimation at -3°C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY transcription factors may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes were down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription were up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation. We used whole genome microarrays to monitor changes in gene expression in the Arabidopsis thaliana accessions Columbia-0, Rschew and Tenela during three days of acclimation to sub-zero temperature at -3°C after cold acclimation Plants from Arabidopsis thaliana accessions Columbia-0, Rschew and Tenela were cold acclimated at 4°C for two weeks. Detached leaves were then sub-zero acclimated at -3°C for 8 h, 1 d or 3 d at -3°C. Leaves of cold acclimated plants and sub-zero acclimated leaves were collected for RNA extraction and hybridization on Affymetrix ATH1 microarrays in order to explore temporal transcriptome changes during sub-zero acclimation. For each sample total RNA was isolated from a pool of three leaves from three different plants. The experiment was performed in three idenpendent biological replicates.
Project description:To understand the role of Arabidopsis histone deacetylase HDA6 in plant cold acclimation, we have employed transcriptional profiling of the hda6 mutant and its parental line under cold and control conditions to identify genes differentially expressed in the hda6 mutant under cold and control conditions. Aligent’s Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K) were used.
Project description:Arabidopsis sfr mutants are deficient in cold acclimation during exposure to coolnon-freezing temperatures. Although not visibly affected by the cold they have lost the ability to survive subsequent freezing. We plan to investigate how the sfr2 and sfr6 mutants respond to low temperature on the gene expression level. Wild type plants that have undergone identical treatments in parallel are necessary controls. The cold treatment of plants in the rosette stage (soil grown in a 8/16 hours day/night cycle) will be carried out in a cooled growth chamber at 4 degrees for 24 hours (same light regimetreatment starting/ending at the 4th hour of light). The aerial parts of the treated and untreated plants will be collected and frozen immediately in liquid nitrogen for RNA extraction. Comparison of the cold response of thousands of Arabidopsis genes in the wild type to the situation in our freezing sensitive mutants will enhance our understanding of the cold response itself and illuminate the effect of the mutations on the cold acclimation process. Experimenter name = Irene Bramke Experimenter phone = 01784 44 3770 Experimenter fax = 01784 43 4326 Experimenter address = Royal Holloway Experimenter address = University of London Experimenter address = School of Biological Sciences Experimenter address = Bourne Building Experimenter address = Laboratory 406 Experimenter zip/postal_code = TW20 OEX Experimenter country = UK Keywords: growth_condition_design; genetic_modification_design