Project description:Bacterial persister cells are phenotypic variants of regular cells that are tolerant to antibiotics. Analysis of clinical isolates of M. tuberculosis showed that strains vary substantially in their tolerance to antibiotics. The level of persisters was very high is some isolates, suggesting that these are hip mutants. We investigated gene expression differences in eight clinical isolates, four of which we characterized as high-persister strains and four as low-persister, or regular, strains. Comparison of gene expression patterns may provide clues as to the genetic mechanisms underlying persister formation.
Project description:Comparative analysis of genome wide binding profile of Ncb2 in azole sensitive (AS, Gu4) and azole resistant (AR, Gu5) clinical isolates of Candida albicans. The goal was to study the role of Ncb2 in acquisition of drug resistance by comparing the binding profiles of Ncb2 in both the isolates.
Project description:Members of the Mycobacterium (M.) abscessus complex (MABC) are rapidly growing mycobacteria showing smooth and/or rough colony morphotype. While not as virulent as M. tuberculosis, they can cause soft tissue infection and fatal pulmonary disease, especially in patients with cystic fibrosis. Diagnosing MABC pulmonary disease is challenging since the isolation of M. abscessus from respiratory samples is in itself not diagnostic and the clinical features are often non-specific. Immunologic assays, which could aid in the understanding and diagnosis of the disease, are not available. In this study eight rough and six smooth colony morphotype isolates were collected from seven clinical MABC strains and the M. abscessus reference strain ATCC19977, as six strains showed both morphotypes simultaneously and two strains only showed a rough morphotype. Clinical isolates were submitted to whole genome sequencing. Quantitative proteomic analysis was performed on bacterial lysates and the culture supernatant of all 14 isolates. Supernatant proteins present in all isolates were compared in a BLAST search against other clinically significant mycobacterial species to determine species-specific proteins of MABC. In silico B- and T-cell epitope prediction was performed for species-specific proteins. All clinical strains were found to be M. abscessus ssp. abscessus. Six of seven rough colony clinical isolates contained genetic changes in the MAB_4099c gene, which is a likely genetic basis for the rough morphotype. Proteomic analysis detected 3 137 different proteins in total of which 79 proteins were found in the culture supernatants of all isolates. BLAST analyses of these 79 proteins identified 12 of those exclusively encoded by all members of MABC plus M. immunogenum. In silico prediction of epitopes predicted B- and T-cell epitopes in all these 12 species-specific proteins, rendering them promising candidates for future studies on immune pathogenesis and immune diagnostic tools for MABC disease.
Project description:In Candida albicans, Upc2 is a zinc-cluster transcription factor that targets genes including those of the ergosterol biosynthesis pathway. To date there have been three documented UPC2 gain-of-function (GOF) mutations recovered from fluconazole-resistant clinical isolates that contribute to an increase in ERG11 expression and decreased fluconazole susceptibility. In a group of 62 fluconazole-resistant isolates, we found that 47 of these overexpressed ERG11 by at least two-fold over that of an average expression of 3 unrelated fluconazole susceptible strains. Of those 47 isolates, 29 contained a mutation in UPC2, whereas the remaining 18 isolates did not. Of the isolates containing mutations in UPC2, we recovered eight distinct mutations resulting in single putative amino acid substitutions: G648D, G648S, A643T, A643V, Y642F, G304R, A646V and W478C. Seven of these resulted in increased ERG11 expression, increased cellular ergosterol, and decreased susceptibility to fluconazole as compared to the wild-type strain. Genome-wide transcriptional analysis was performed for the four strongest Upc2 amino acid substitutions (A643V, G648D, G648S and Y642F). Genes commonly upregulated in all four mutations included those involved in ergosterol biosynthesis, in oxidoreductase activity, the major facilitator efflux pump encoded by the MDR1 gene, and the uncharacterized ATP binding cassette transporter CDR11. These findings demonstrate that gain-of-function mutations in UPC2 are more prevalent than previously thought among clinical isolates, make a significant contribution to azole antifungal resistance, but do not account for ERG11 overexpression in all such isolates of C. albicans.
Project description:In 2014, enterovirus D68 (EV-D68), previously associated primarily with mild respiratory illness, caused a large outbreak of severe respiratory illness and, in rare instances, paralysis. We compared viral binding and replication of eight recent EV-D68 clinical isolates and the prototype Fermon strain from 1962 in cultured HeLa cells and differentiated human primary bronchial epithelial cells (BEC) to understand the possible reasons for the change in virus pathogenicity. We found no significant differences in binding or replication in HeLa cell cultures between the recent clinical isolates. However, in HeLa cells, Fermon had significantly greater (1.5-2 log) binding and virus progeny yields but a similar level of replication (~2-log increase in viral RNA from 2h to 24h post infection) compared to recent isolates. In differentiated BECs, Fermon and the recent EV-D68 isolates had similar levels of binding; however, the recent isolates produced 1-2-log higher virus progeny yields than Fermon due to increased replication. We then utilized RNA-seq to define the transcriptional responses in BECs infected with four recent EV-D68 isolates, representing major phylogenetic clades, and Fermon strain. All the tested clinical isolates induced similar responses in BECs; however, numerous upregulated genes in antiviral and pro-inflammatory response pathways were identified when comparing the response to clinical isolates versus Fermon. These results indicate that the recent emergence in severe EV-D68 cases could be explained by increased replication efficiency and enhanced inflammatory response induced by newly emerged clinical isolates.
Project description:Comparative genomic hybridization between Escherichia coli strains to determine core and pan genome content of clinical and environmental isolates
Project description:Comaprision of P.falciparum clinical isolates showing Uncomplicated disease with that shwoing complicated disease(Cerebral malaria) The experiment was designed to try and identify differences if any, at the genome level between P.falciparum isolates from patients with uncomplicated malaria vs. patients with complicated malaria (Cerebral malaria). The emphasis was to highlight possible amplifications/deletions in different regions of the parasite genome.
Project description:In Candida albicans, Upc2 is a zinc-cluster transcription factor that targets genes including those of the ergosterol biosynthesis pathway. To date there have been three documented UPC2 gain-of-function (GOF) mutations recovered from fluconazole-resistant clinical isolates that contribute to an increase in ERG11 expression and decreased fluconazole susceptibility. In a group of 62 fluconazole-resistant isolates, we found that 47 of these overexpressed ERG11 by at least two-fold over that of an average expression of 3 unrelated fluconazole susceptible strains. Of those 47 isolates, 29 contained a mutation in UPC2, whereas the remaining 18 isolates did not. Of the isolates containing mutations in UPC2, we recovered eight distinct mutations resulting in single putative amino acid substitutions: G648D, G648S, A643T, A643V, Y642F, G304R, A646V and W478C. Seven of these resulted in increased ERG11 expression, increased cellular ergosterol, and decreased susceptibility to fluconazole as compared to the wild-type strain. Genome-wide transcriptional analysis was performed for the four strongest Upc2 amino acid substitutions (A643V, G648D, G648S and Y642F). Genes commonly upregulated in all four mutations included those involved in ergosterol biosynthesis, in oxidoreductase activity, the major facilitator efflux pump encoded by the MDR1 gene, and the uncharacterized ATP binding cassette transporter CDR11. These findings demonstrate that gain-of-function mutations in UPC2 are more prevalent than previously thought among clinical isolates, make a significant contribution to azole antifungal resistance, but do not account for ERG11 overexpression in all such isolates of C. albicans. We examined the expression of genes in response to the presence of 4 gain-of-function alleles of the zinc-cluster transcription factor Upc2. The global gene expression of each mutant Upc2 strain was compared to that of the wildtype strain SC5314.
Project description:We present highly replicated whole transcriptome gene expression profiles of schizont-stage malaria parasites using RNA-seq analysis of multiple clinical isolates and laboratory-adapted lines Methods: Transcript profiles of schizont-stage laboratory-adapted and clinical malaria parasite isolates were generated by RNA sequencing. Five to ten replicates were sequenced per sample. Illumina stranded TruSeq libraries were sequenced using an Illumina MiSeq. Paired-end fastQ files were aligned using hisat2 and converted to indexed bam files using samtools. Bam files were filtered to exclude reads with MAPQ scores below 60. Reads were counted using SummarizeOverlaps feature of the GenomicAlignments package in R. Differential expression analysis was conducted using DESeq2 in R. qRT–PCR validation of differentially expressed genes was performed using SYBR Green assays for eight genes. Results: We show that increasing sample replication improves the true-positive discovery rate, and that when fewer replicates are available, focussing on the most highly expressed genes maintains the true-positive discovery rate. We identify schizont-stage genes that appear to alter in expression through the process of culture adaptation, as well as genes that show variable expression between isolates. We extend transcript quantitation for variably expressed genes to an even wider panel of ex vivo clinical isolate samples. Conclusions: Our study represents the first detailed analysis of replicated P. falciparum schizont-stage transcriptomes. Our data show that high levels of replication are necessary to capture gene expression differences among parasite isolates. We identify schizont-stage expressed genes that may be differentially expressed as a mechanism of immune evasion.