Project description:Annotation of small RNAs from 11 Drosophila species for the purpose of non-coding RNA annotation and comparative genomics assessment.
Project description:We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from three different tissue types from three other species of squid species (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein coding genes supported by evidence and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.
Project description:Species of the genus Drosophila have served as favorite models in speciation studies, however genetic factors of the interspecific hybrid sterility are underinvestigated to date. Here we performed the analysis of reproductive incompatibilities of hybrid females in crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis, molecular, cellular and genetic approaches we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis and functional defects of oogenesis in hybrids. A premature GSC loss was a most prominent defect of oogenesis in hybrid ovaries. Owing differential expression of genes encoding components of the piRNA pathway rhino and deadlock, functional RDCmel complex in hybrid ovaries was not assembled. At the same time the activity of RDCsim complex was maintained in hybrids, independently from the genomic origin of piRNA clusters. Despite identification of a cohort of overexpressed TEs in hybrid ovaries we found no evidences that their activity can be considered as the main cause of hybrid sterility. We revealed complex pattern of Vasa protein expression in hybrid germline, including partial AT-chX piRNA targeting of vasasim allele and significant developmental delay of vasamel expression. We came to the conclusions that complex multi-locus genetic changes between the species were responsible for hybrid sterility phenotype.
Project description:Curration of small RNAs from four melanogaster-subgroup species (Drosophila simulans, Drosophila sechellia, Drosophila erecta, and Drosophila yakuba) for the purpose of non-coding RNA annotation and comparative genomics assessment.
Project description:Deep sequencing of total RNA extracted from the genital discs of males for each of the following strains : Drosophila sechellia, Drosophila mauritiana, hybrid introgression line 3Q1(A) and hybrid introgression line Q1(A)
Project description:Species of the genus Drosophila have served as favorite models in speciation studies, however genetic factors of the interspecific hybrid sterility are underinvestigated to date. Here we performed the analysis of reproductive incompatibilities of hybrid females in crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis, molecular, cellular and genetic approaches we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis and functional defects of oogenesis in hybrids. A premature GSC loss was a most prominent defect of oogenesis in hybrid ovaries. Owing differential expression of genes encoding components of the piRNA pathway rhino and deadlock, functional RDCmel complex in hybrid ovaries was not assembled. At the same time the activity of RDCsim complex was maintained in hybrids, independently from the genomic origin of piRNA clusters. Despite identification of a cohort of overexpressed TEs in hybrid ovaries we found no evidences that their activity can be considered as the main cause of hybrid sterility. We revealed complex pattern of Vasa protein expression in hybrid germline, including partial AT-chX piRNA targeting of vasasim allele and significant developmental delay of vasamel expression. We came to the conclusions that complex multi-locus genetic changes between the species were responsible for hybrid sterility phenotype.