Project description:A DNA microarray analysis detected large-scale changes of gene expression in response to Cd stress with a substantial difference between the two barley genotypes differing in Cd tolerance and accumulation. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd accumulation. We used microarrays to understand the mechanism of low Cd accumulation in crops which is crucial for sustainable safe food production in Cd-contaminated soils.
Project description:We hypothesized that the genome segments of cultivated barley should show certain similarity with its ancestral wild barley. Instead of whole genome sequences, we employed RNA-Seq to investigated the genomic origin of modern cultivated barley using some representative wild barley genotypes from the Near East and Tibet, and representative world-wide selections of cultivated barley.
Project description:Hordeum vulgare is one of the first domesticated grains in the world and it has been reported that variations in the light environment have a substantial effect on barley plant development and biological processes. High-throughput RNA-Seq study was performed to investigate the complex transcriptome network required for photomorphogenesis in barley. Seedlings were grown in dark and light conditions and three biological replicates were sampled from each condition. Six libraries from poly-A rich mRNA fraction were subjected to 51bp single-end RNA-seq sequencing.
Project description:NILs containing five parental lines, three wild barley genotypes ssp. spontaneum: HID 4 (A), Iraq; HID 64 (B), Turkey; and HID 369 (C), Israel, one ssp. agriocrithon: HID 382(D)) and cv. Morex (ssp. vulgare, USA). Purpose: Variant calling to identifie markers associated with a awn length QTL on the distal part of chromosome 7HL
Project description:In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces.
Project description:Purpose: The goal of this study was to investigate the mechanisms involved in the initiation and development of crown-roots (CRs) in barley and to estimate the role of cytokinins (CKs) in this process. Method: stranded libraries were obtained from RNA extracted from the stem base of 1 day-after-germination (DAG) and 10DAG-seedlings of wild-type (WT) and AtCKX-overexpressing barley lines (OE-CKX). OE-CKX lines have a reduced content of endogenous CKs and are characterized by a higher number of CRs. Libraries were deep sequenced on Illumina HighSeq platform. Each sample was investigated in three independent biological replicates. Results: Using a data analysis workflow optimized for barley, we identified more than 4000 transcripts differentially expressed in the stem base of 1DAG and 10DAG-seedlings. Expression as determined by RNA-seq was validated by real-time PCR. Our data were compared to the transcriptomic profiling obtained from rice and we were able to identify genes potentially involved in the initiation/development of CRs in barley. Also the use of the transgenic line with altered endogenous CK content allowed us to conclude about the role of CKs in the process. Conclusions: Our study represents the first analysis aiming to understand the initiation and development of CRs in barley.