Project description:The ketogenic diet has long been used to treat epilepsy, but its mechanism is not yet clearly understood. To explore the potential mechanism, the changes in gene expression induced by the ketogenic diet in the rat kainic acid (KA) epilepsy model were analyzed. Two-condition experiment, Normal diet-fed rat brain vs. Ketogenic diet-fed rat brain. Duplicate per array
Project description:The ketogenic diet has long been used to treat epilepsy, but its mechanism is not yet clearly understood. To explore the potential mechanism, the changes in gene expression induced by the ketogenic diet in the rat kainic acid (KA) epilepsy model were analyzed.
Project description:Analysis of liver gene transcription during feeding of a ketogenic diet. Ketogenic diets may alter physiologic and metabolic profiles in a direction that favors weight loss. C57BL/6J mice were maintained for six weeks on either chow or ketogenic diet. Mice eating KD had lower weights, 90% reduction in insulin levels and increased energy expenditure compared to animals fed chow. Despite consumption of a very high fat diet serum lipids remained normal. Here we show that consumption of KD shifted liver metabolism to drastically increased fatty acid oxidation. Concurrently, expression of genes involved in fatty acid synthesis were markedly suppressed. Reference: A high fat, ketogenic diet induces a unique metabolic state in mice. Kennedy AR, Pissios P, Out H, Xue B, Asakura K, Furukawa N, Marino FE, Liu FF, Kahn BB, Liberman TA, Maratos-Flier E. in press, 2007, Am J Physiol Metab 292. Experiment Overall Design: Eight week old C57BL/6 mice were fed either chow (Labdiet 5008, Pharmserv) or KD (F3666, Bio-Serv) for six weeks. Livers were harvested in the morning in ad lib fed animals. Total RNA from 2-3 animals in each group was used for Affymetrix analysis.
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:Analysis of liver gene transcription during feeding of a ketogenic diet. Ketogenic diets may alter physiologic and metabolic profiles in a direction that favors weight loss. C57BL/6J mice were maintained for six weeks on either chow or ketogenic diet. Mice eating KD had lower weights, 90% reduction in insulin levels and increased energy expenditure compared to animals fed chow. Despite consumpiton of a very high fat diet serum lipids remained normal. Here we show that consumption of KD shifted liver metabolism to drastically increased fatty acid oxidation. Concurrently, expression of genes involved in fatty acid synthesis were markedly suppressed. Keywords: Hepatic profile
Project description:To investigate the translatome in the ketogenic diet fed condition and the role of phosphoralated eIF4E in it We performed polysome sequencing on chow fed and 24h ketogenic diet fed wild type mice and chow fed eIF4E S209A/S209A mice