Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilent’s Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilent’s Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses.
Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilentâs Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilentâs Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses. Three healthy, gelding warmblood horses between 9 and 17 yr were selected. 6 samples were collected containing 3 samples before exercise and 3 samples after exercise