Project description:The SARS-CoV-2 Hydra with many heads (variants) has been causing the COVID-19 pandemic for 3 years. The appearance of every new head (SARS-CoV-2 variant) causes a new pandemic wave. The last in the series is the XBB.1.5 "Kraken" variant. In the general public (social media) and in the scientific community (scientific journals), during the last several weeks since the variant has appeared, the question was raised of whether the infectivity of the new variant will be greater. This article attempts to provide the answer. Analysis of thermodynamic driving forces of binding and biosynthesis leads to the conclusion that infectivity of the XBB.1.5 variant could be increased to a certain extent. The pathogenicity of the XBB.1.5 variant seems to be unchanged compared to the other Omicron variants.
Project description:Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10-4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.
Project description:The on-going COVID-19 pandemic requires a deeper understanding of the long-term antibody responses that persist following SARS-CoV-2 infection. To that end, we determined epitope-specific IgG antibody responses in COVID-19 convalescent sera collected at 5 months post-diagnosis and compared that to sera from naïve individuals. Each serum sample was reacted with a high-density peptide microarray representing the complete proteome of SARS-CoV-2 as 15 mer peptides with 11 amino acid overlap and homologs of spike glycoprotein, nucleoprotein, membrane protein, and envelope small membrane protein from related human coronaviruses. Binding signatures were compared between COVID-19 convalescent patients and naïve individuals using the web service tool EPIphany.
Project description:Substitutions that fix between SARS-CoV-2 variants can transform the mutational landscape of future evolution via epistasis. For example, large epistatic shifts in mutational effects caused by N501Y underlied the original emergence of Omicron, but whether such epistatic saltations continue to define ongoing SARS-CoV-2 evolution remains unclear. We conducted deep mutational scans to measure the impacts of all single amino acid mutations and single-codon deletions in the spike receptor-binding domain (RBD) on ACE2-binding affinity and protein expression in the recent Omicron BQ.1.1 and XBB.1.5 variants, and we compared mutational patterns to earlier viral strains that we have previously profiled. As with previous deep mutational scans, we find many mutations that are tolerated or even enhance binding to ACE2 receptor. The tolerance of sites to single-codon deletion largely conforms with tolerance to amino acid mutation. Though deletions in the RBD have not yet been seen in dominant lineages, we observe tolerated deletions including at positions that exhibit indel variation across broader sarbecovirus evolution and in emerging SARS-CoV-2 variants of interest, most notably the well-tolerated Δ483 deletion in BA.2.86. The substitutions that distinguish recent viral variants have not induced as dramatic of epistatic perturbations as N501Y, but we identify ongoing epistatic drift in SARS-CoV-2 variants, including interaction between R493Q reversions and mutations at positions 453, 455, and 456, including F456L that defines the XBB.1.5-derived EG.5 lineage. Our results highlight ongoing drift in the effects of mutations due to epistasis, which may continue to direct SARS-CoV-2 evolution into new regions of sequence space.