Project description:The SARS-CoV-2 Hydra with many heads (variants) has been causing the COVID-19 pandemic for 3 years. The appearance of every new head (SARS-CoV-2 variant) causes a new pandemic wave. The last in the series is the XBB.1.5 "Kraken" variant. In the general public (social media) and in the scientific community (scientific journals), during the last several weeks since the variant has appeared, the question was raised of whether the infectivity of the new variant will be greater. This article attempts to provide the answer. Analysis of thermodynamic driving forces of binding and biosynthesis leads to the conclusion that infectivity of the XBB.1.5 variant could be increased to a certain extent. The pathogenicity of the XBB.1.5 variant seems to be unchanged compared to the other Omicron variants.
Project description:Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10-4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.