Project description:Caldicellulosiruptor saccharolyticus is an extremely thermophilic, Gram-positive anaerobe, which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2 and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to co-utilize glucose and xylose, make this bacterium an attractive candidate for microbial bioenergy production. Glycolytic pathways and an ABC-type sugar transporter were significantly up-regulated during growth on glucose and xylose, indicating that C. saccharolyticus co-ferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks represents a highly desirable feature of a lignocellulose-utilizing, biofuel-producing bacterium. Keywords: substrate response
Project description:The ideal microorganism for consolidated biomass processing to biofuels has the ability to breakdown of lignocellulose. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on lignocellulose samples as well as model hemicellulose components. Identification of the enzymes utilized by the cell in lignocellulose saccharification was done using whole-genome transcriptional response analysis and comparative genomics.
Project description:The genome of the lignocellulose-degrading, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus encodes genes comprising clusters of glycoside hydrolases, ABC transporters and metabolic enzymes that are transcriptionally responsive to carbohydrates. Transcriptomic and biosolubilization analyses were used to determine if C. saccharolyticus could be deployed as a probe to assess the characteristics of plant biomass feedstocks and efficacy of pre-treatment methods, as these both relate to deconstruction strategies for biofuels production. Based on the response of C. saccharolyticus to plant cell wall polysaccharides, genomic loci were identified that reflected the availability of cellulose, glucomannan, pectin and xylan in biomass to microbial degradation. Furthermore, these loci were useful in assessing how various plant biomass feedstocks (genetically and chemically modified Populus sp., unpretreated Populus sp., and chemically modified switchgrass) were amenable C. saccharolyticus solubilization.
Project description:Caldicellulosiruptor saccharolyticus is an extremely thermophilic, Gram-positive anaerobe, which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2 and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to co-utilize glucose and xylose, make this bacterium an attractive candidate for microbial bioenergy production. Glycolytic pathways and an ABC-type sugar transporter were significantly up-regulated during growth on glucose and xylose, indicating that C. saccharolyticus co-ferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks represents a highly desirable feature of a lignocellulose-utilizing, biofuel-producing bacterium. Keywords: substrate response C. saccharolyticus was subcultured (overnight) 3 times on the substrate of interest in modified DSMZ 640 medium before inoculating a pH-controlled (pH = 7) 1-liter fermentor containing 4 gram substrate per liter. Cells were grown at 70 °C until mid-logarithmic phase (~OD660 = 0.3-0.4) and harvested by centrifugation and rapid cooling to 4 °C and stored at -80 °C. To elucidate the central carbon metabolic pathways and their regulation, transcriptome analysis was performed after growth on glucose, xylose and a 1:1 mixture of both substrates. L-Rhamnose, which was likely to follow another pathway, was used as a reference substrate.
Project description:The ideal microorganism for consolidated biomass processing to biofuels has the ability to breakdown of lignocellulose. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on lignocellulose samples as well as model hemicellulose components. Identification of the enzymes utilized by the cell in lignocellulose saccharification was done using whole-genome transcriptional response analysis and comparative genomics. C. saccharolyticus was subcultured (overnight) seven times on the substrate of interest in modified DSMZ 640 medium before inoculating a 1-liter batch containing 0.5 gram substrate per liter. Cells were grown at 70 °C until mid-logarithmic phase (3-5*107) and harvested by rapid cooling to 4 °C and centrifugation and then stored at -80 °C. To elucidate the transporters plus the central carbon metabolic pathways and their regulation utilized on the different sugars, transcriptome analysis was performed after growth on switchgrass, poplar, glucose and xylose.
Project description:Phylogenetic, microbiological and comparative genomic analysis was used to examine the diversity among members of the genus Caldicellulosiruptor with an eye towards the capacity of these extremely thermophilic bacteria for degrading the complex carbohydrate content of plant biomass. Seven species from this genus (C. saccharolyticus, C. bescii (formerly Anaerocellum thermophilum), C. hydrothermalis, C. owensensis, C. kronotskyensis, C. lactoaceticus, and C. kristjanssonii) were compared on the basis of 16S rRNA phylogeny and cross-species DNA-DNA hybridization to a whole genome C. saccharolyticus oligonucleotide microarray. Growth physiology of the seven Caldicellulosiruptor species on a range of carbohydrates showed that, while all could be cultivated on acid pre-treated switchgrass, only C. saccharolyticus, C. besci, C. kronotskyensis, and C. lactoaceticus were capable of hydrolyzing Whatman No. 1 filter paper. Two-dimensional gel electrophoresis of the secretomes from cells grown on microcrystalline cellulose revealed that species capable of crystalline cellulose hydrolysis also had diverse secretome fingerprints. The two-dimensional secretome of C. saccharolyticus revealed a prominent S-layer protein that appears to be also indicative of highly cellulolytic Caldicellulosiruptor species, suggesting a possible role in cell-substrate interaction. These growth physiology results were also linked to glycoside hydrolase and carbohydrate-binding module inventories for the seven bacteria, deduced from draft genome sequence information. These preliminary inventories indicated that the absence of a single glycoside hydrolase family and carbohydrate binding motif family appear to be responsible for some Caldicellulosiruptor species’ diminished cellulolytic capabilities. Overall, the genus Caldicellulosiruptor appears to contain more genomic and physiological diversity than previously reported, and is well suited for biomass deconstruction applications. Six dye-flip experiments were conducted using C. saccharolyticus genomic DNA as the reference in each dye-flip, and one of six different Caldicellulosiruptor spp. as a tester in each dye-flip
Project description:Phylogenetic, microbiological and comparative genomic analysis was used to examine the diversity among members of the genus Caldicellulosiruptor with an eye towards the capacity of these extremely thermophilic bacteria for degrading the complex carbohydrate content of plant biomass. Seven species from this genus (C. saccharolyticus, C. bescii (formerly Anaerocellum thermophilum), C. hydrothermalis, C. owensensis, C. kronotskyensis, C. lactoaceticus, and C. kristjanssonii) were compared on the basis of 16S rRNA phylogeny and cross-species DNA-DNA hybridization to a whole genome C. saccharolyticus oligonucleotide microarray. Growth physiology of the seven Caldicellulosiruptor species on a range of carbohydrates showed that, while all could be cultivated on acid pre-treated switchgrass, only C. saccharolyticus, C. besci, C. kronotskyensis, and C. lactoaceticus were capable of hydrolyzing Whatman No. 1 filter paper. Two-dimensional gel electrophoresis of the secretomes from cells grown on microcrystalline cellulose revealed that species capable of crystalline cellulose hydrolysis also had diverse secretome fingerprints. The two-dimensional secretome of C. saccharolyticus revealed a prominent S-layer protein that appears to be also indicative of highly cellulolytic Caldicellulosiruptor species, suggesting a possible role in cell-substrate interaction. These growth physiology results were also linked to glycoside hydrolase and carbohydrate-binding module inventories for the seven bacteria, deduced from draft genome sequence information. These preliminary inventories indicated that the absence of a single glycoside hydrolase family and carbohydrate binding motif family appear to be responsible for some Caldicellulosiruptor species’ diminished cellulolytic capabilities. Overall, the genus Caldicellulosiruptor appears to contain more genomic and physiological diversity than previously reported, and is well suited for biomass deconstruction applications.
Project description:Microbiological, genomic and transcriptomic analyses were used to examine three species from the bacterial genus Caldicellulosiruptor with respect to their capacity to convert the carbohydrate content of lignocellulosic biomass at 70°C to simple sugars, acetate, lactate, CO2 and H2. C. bescii, C. kronotskyensis and C. saccharolyticus solubilized 38%, 36% and 29% (by weight) of unpretreated switchgrass (5 g/l), repectively, which was about half of the concentration of crystalline cellulose (Avicel, 5 g/l) that was solubilized under the same conditions. The lower yields with C. saccharolyticus were unexpected, given that its genome encodes the same GH9-GH48 multi-domain cellulase (CelA) found in the other two species. However, the genome of C. saccharolyticus lacks two other cellulases with GH48 domains, which could be responsible for its lower levels of solubilization. Transcriptomes for growth of each species comparing Cellulose to switchgrass showed that many carbohydrate ABC transporters and multi-domain extracellular glycoside hydrolases were differentially regulated, reflecting the heterogeneity of lignocellulose. However, significant differences in transcription levels for conserved genes among the three species were noted, indicating unexpectedly diverse regulatory strategies for deconstruction for these closely related bacteria. Genes encoding the Che-type chemotaxis system and flagella biosynthesis were up-regulated in C. kronotskyensis and C. bescii during growth on cellulose, implicating motility in substrate utilization. The results here show that capacity for plant biomass deconstruction varies across Caldicellulosiruptor species and depends in a complex way on GH genome inventory, substrate composition, and gene regulation. A dye swap was completed with each of three Caldicellulosiruptor species: C. bescii, C. kronotskyensis and C. saccharolyticus growing on cellulose and switchgrass. Half of the RNA sample for one condition was labeled with Cy3 and the other half Cy5. The two differentially labeled samples were run on two different slides and analyzed to investigate differences in transcription during growth on cellulose and switchgrass.
Project description:Microbiological, genomic and transcriptomic analyses were used to examine three species from the bacterial genus Caldicellulosiruptor with respect to their capacity to convert the carbohydrate content of lignocellulosic biomass at 70°C to simple sugars, acetate, lactate, CO2 and H2. C. bescii, C. kronotskyensis and C. saccharolyticus solubilized 38%, 36% and 29% (by weight) of unpretreated switchgrass (5 g/l), repectively, which was about half of the concentration of crystalline cellulose (Avicel, 5 g/l) that was solubilized under the same conditions. The lower yields with C. saccharolyticus were unexpected, given that its genome encodes the same GH9-GH48 multi-domain cellulase (CelA) found in the other two species. However, the genome of C. saccharolyticus lacks two other cellulases with GH48 domains, which could be responsible for its lower levels of solubilization. Transcriptomes for growth of each species comparing Cellulose to switchgrass showed that many carbohydrate ABC transporters and multi-domain extracellular glycoside hydrolases were differentially regulated, reflecting the heterogeneity of lignocellulose. However, significant differences in transcription levels for conserved genes among the three species were noted, indicating unexpectedly diverse regulatory strategies for deconstruction for these closely related bacteria. Genes encoding the Che-type chemotaxis system and flagella biosynthesis were up-regulated in C. kronotskyensis and C. bescii during growth on cellulose, implicating motility in substrate utilization. The results here show that capacity for plant biomass deconstruction varies across Caldicellulosiruptor species and depends in a complex way on GH genome inventory, substrate composition, and gene regulation.