Project description:The aim of this study was to identify candidate genes responsible for grain number per panicle between a pair of rice varieties (Pusa 1266 and Pusa Basmati 1) by combining QTL analysis with expression analysis. Microarray analysis of RNA extracted from the panicle primordia showed 2741 differentially expressed genes. The differentially expressed genes were shortened to 18 on the basis of their occurance in the QTL region (responsible for grain number regulation) detected in RIL population derived from Pusa 1266 and Pusa Basmati 1. RNA from the stage '0' panicle primordia of Pusa 1266 and Pusa Basmati 1 were analysed in two different biological replications (A and B) making total four samples
Project description:Background: Elucidating epigenetic mechanisms could provide new biomarkers for disease diagnosis and prognosis. Technological advances allow genome-wide profiling of 5-hydroxymethylcytosines (5hmC) in liquid biopsies. 5hmC-Seal followed by NGS is a highly sensitive technique for 5hmC biomarker discovery in cfDNA. Currently, 5hmC Seal is optimized for EDTA blood collection. We asked whether heparin was compatible with 5hmC Seal as many clinical and biobanked samples are stored in heparin. Methods: We obtained 60 samples in EDTA matched to 60 samples in heparin from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Samples were comprised of 30 controls and 30 individuals who later were diagnosed with colon cancer. We profiled genome-wide 5hmC in cfDNA using 5hmC-Seal assay followed by NGS. The 5hmC profiling data from samples collected in EDTA were systematically compared to those in heparin across various genomic features. Results: cfDNA isolation and library construction appeared comparable in heparin vs. EDTA. Typical genomic distribution patterns of 5hmC, including gene bodies and enhancer markers, were comparable in heparin vs. EDTA. 5hmC analysis of cases and controls yielded highly correlated differential features suggesting that both anticoagulants were compatible with 5hmC Seal assay. Conclusions: While not currently recommended for the 5hmC-Seal protocol, blood samples stored in heparin were successfully used to generate analyzable and biologically relevant genome-wide 5hmC profiling. Our findings are the first to support opportunities to expand the biospecimen resource to heparin samples for 5hmC Seal and perhaps other PCR-based technologies in epigenetic research.
Project description:The aim of this study was to identify candidate genes responsible for grain number per panicle between a pair of rice varieties (Pusa 1266 and Pusa Basmati 1) by combining QTL analysis with expression analysis. Microarray analysis of RNA extracted from the panicle primordia showed 2741 differentially expressed genes. The differentially expressed genes were shortened to 18 on the basis of their occurance in the QTL region (responsible for grain number regulation) detected in RIL population derived from Pusa 1266 and Pusa Basmati 1.
Project description:In the present study, we applied two whole-genome sequencing techniques (WGBS/oxBS and hMe-Seal) to detect 5hmC (and 5mC) changes during the differentiation of the human SGBS preadipocyte cell line to mature adipocytes. As technical and biological validation we performed BS and oxBS followed by 450k array analysis. RNA-seq data was performed in parallel to study transcriptional changes associated with differential hydroxymethylation. In human white adipose tissue (WAT) hydroxymethylation (hME-Seal) was characterized in comparison with histone modifications and acNEIL1 binding (ACT-seq).
Project description:Here we used Illumina NGS for high-throughput profiling of the DNA methylome(ERRBS) and hydroxymethylome(hMe-Seal) of primary tumor samples with Acute Myeloid Leukemia(AML). The data can be used to compare hydroxymethylation and methylation patterns from different AML subtypes and normal bone marrow samples. We have sequenced 4 subtypes of AML with hydroxymethylation decrease and 1 subtype with no decrease. We have sequenced 2-5 primary tumor samples for each subtype, and comprated the epigenomic profiles ( ERRBS and hMe-Seal ) of hydroxymethylation deficient subtypes to the control subtype and normal bone marrow samples.