Project description:The present study describes the isolation of a Thermococcus sp. strain 175 from the world‘s deepest hydrothermal vent sites known thus far – The Mid-Cayman Rise.consisting of two hydrothermal venting systems Bee Bee (or Piccard), at 4950m depth and Von Damm (or Walsh) at 2300m The strain is capable of growth over 0.1MPa (atm. Pressure) to 120MPa, the widest known range of pressure dependent growth. The study further explores piezophilic adaptation using comparative genomic tools. Insights into the transcriptome of this strain providers the first look into the transcriptional machinery of peizophilic Thermococci.
Project description:<p>Deep-sea hydrothermal vents are unique ecosystems that may release chemically distinct dissolved organic matter to the deep ocean. Here, we describe the composition and concentrations of polar dissolved organic compounds observed in low and high temperature hydrothermal vent fluids at 9°50′N on the East Pacific Rise. The concentration of dissolved organic carbon was 46 µM in the low temperature hydrothermal fluids and 14 µM in the high temperature hydrothermal fluids. In the low temperature vent fluids, quantifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. The low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of biological activity in the subseafloor. These compounds may fuel heterotrophic and other metabolic processes at deep-sea hydrothermal vents and beyond.</p>
Project description:With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended.Supplementary informationThe online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Project description:This data set was downloaded from MetaboLights (http://www.ebi.ac.uk/metabolights/) accession number MTBLS428 Abstract:"Deep-sea hydrothermal vents are unique ecosystems that may provide chemically distinct dissolved organic matter to the deep ocean. Here, we describe the types and concentrations of polar dissolved organic compounds observed at low and high temperature hydrothermal vents at 9°50’N, the East Pacific Rise. The concentration of dissolved organic carbon was 46 µM in the low temperature hydrothermal fluids and 14 µM in the high temperature hydrothermal fluids. In the low temperature vent fluids, identifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. Thus, low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of subseafloor biological activity. These compounds may fuel heterotrophic, metabolic processes at deep-sea hydrothermal vents and beyond."