Project description:There remains a poor understanding of cell-specific responses in the human ALS spinal cord, including differences in cell type composition, changes in cell state, and contribution of various cell types to neuroinflammation.
Project description:Transcriptomic analysis of postmortem cervical spinal cord samples from 8 people with ALS (6 sporadic and 2 familial cases) and 4 age-matched non-neurological controls using snRNA-seq
Project description:Amyotrophic lateral sclerosis (ALS) is a paralytic degenerative disease of the nervous system. In the SOD1 mouse model of ALS we found loss of the molecular and functional microglia signature associated with pronounced expression of miR-155 in SOD1 mice. We also found increased expression of miR-155 in the spinal cord of ALS subjects. Genetic ablation of miR-155 increased survival in SOD1 mice and reversed the abnormal microglial and monocyte molecular signature. In addition, dysregulated proteins in the spinal cord of SOD1 mice that we identified in human ALS spinal cords and CSF were restored in SOD1G93A/miR155-/- mice. Treatment of SOD1 mice with anti-miR-155 SOD1 mice injected systemically or into the cerebrospinal fluid prolonged survival and restored the microglial unique genetic and microRNA profiles. Our findings provide a new avenue for immune based therapy of ALS by targeting miR-155.
Project description:Amyotrophic lateral sclerosis (ALS) is a paralytic degenerative disease of the nervous system. In the SOD1 mouse model of ALS we found loss of the molecular and functional microglia signature associated with pronounced expression of miR-155 in SOD1 mice. We also found increased expression of miR-155 in the spinal cord of ALS subjects. Genetic ablation of miR-155 increased survival in SOD1 mice and reversed the abnormal microglial and monocyte molecular signature. In addition, dysregulated proteins in the spinal cord of SOD1 mice that we identified in human ALS spinal cords and CSF were restored in SOD1G93A/miR155-/- mice. Treatment of SOD1 mice with anti-miR-155 SOD1 mice injected systemically or into the cerebrospinal fluid prolonged survival and restored the microglial unique genetic and microRNA profiles. Our findings provide a new avenue for immune based therapy of ALS by targeting miR-155.
Project description:Amyotrophic lateral sclerosis (ALS) is a paralytic degenerative disease of the nervous system. In the SOD1 mouse model of ALS we found loss of the molecular and functional microglia signature associated with pronounced expression of miR-155 in SOD1 mice. We also found increased expression of miR-155 in the spinal cord of ALS subjects. Genetic ablation of miR-155 increased survival in SOD1 mice and reversed the abnormal microglial and monocyte molecular signature. In addition, dysregulated proteins in the spinal cord of SOD1 mice that we identified in human ALS spinal cords and CSF were restored in SOD1G93A/miR155-/- mice. Treatment of SOD1 mice with anti-miR-155 SOD1 mice injected systemically or into the cerebrospinal fluid prolonged survival and restored the microglial unique genetic and microRNA profiles. Our findings provide a new avenue for immune based therapy of ALS by targeting miR-155.
Project description:Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are a strong genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. To investigate gene expression changes and deregulated pathways caused by ataxin-2 intermediate repeat expansions in presence/absence of mutant TDP-43, we performed RNA sequencing of whole spinal cords from knock-in mice harboring ATXN2 and TDP-43 human transgenes as well as non-transgenic mice (NTg)
Project description:mCherry/EGFP double positive cells were isolated from the spinal cords of Tg(ctgfa:mCherry; gfap:EGFP) zebrafish at 5 days post injury. Bulk spinal cord tissue at 5, 10, and 21 days post-injury were also sequenced.
Project description:We compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords. The purpose of this comparison is to assess the extent of molecular similarities between in vitro differentiated MNs and in vivo fetal or adult spinal cord MNs. Data for adult spinal cord MNs are published from other studies: GSE3526, GSE19332, GSE20589, and GSE40438. Human induced pluripotent stem cells, pluripotent stem cell derived motor neurons, and fetal spinal cords for RNA extraction and hybridization on Affymetrix arrays.