Project description:Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX-M-1 encoding IncI1 resistance plasmid in Escherichia coli MG1655 in the presence and absence of therapeutically relevant concentrations of cefotaxime (CTX). Analysis of the proteome by iTRAQ labeling and liquid chromatography tandem mass spectrometry revealed that Tra proteins were significantly up regulated in the presence of CTX. The up-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS39 response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes. The frequency of plasmid conjugation, measured in an antibiotic free environment, increased significantly when the donor was pre-grown in broth containing CTX compared to growth without this drug, regardless of whether blaCTX-M-1 was located on the plasmid or in trans on the chromosome. The results shows that antibiotic treatment can affect expression of a plasmid conjugation machinery and subsequent DNA transfer.
Project description:Incomplete antibiotic removal in pharmaceutical wastewater treatment plants (PWWTPs) could lead to the development and spread of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in the environment, posing a growing public health threat. In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. The N1 strain was highly resistant to ampicillin, cefazolin, chloramphenicol, tetracycline, and norfloxacin, while the N2 strain exhibited high resistance to ampicillin, chloramphenicol, and cefazolin. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity. Overall, this research provides insights into the potential risks posed by ARBs in pharmaceutical wastewater and emphasizes the need for further studies on their impact and mitigation strategies.
Project description:Integrons are genetic elements that enable bacterial adaptation by collecting new genes encoded in integron cassettes (ICs) to create a reservoir of adaptive functions. These cassettes typically lack their own promoters and rely on the integron platform for their expression. Integrons, well-known for spreading antibiotic resistance genes in clinically relevant Gram-negative species, include Mobile Integrons (MIs), that transport over 170 resistance genes. In contrast, Sedentary Chromosomal Integrons (SCIs), ubiquitous in Vibrio species, are primarily found within bacterial chromosomes. However, their functions are not related to antimicrobial resistance and are largely unexplored. SCIs, typified by the Superintegron (SI) in Vibrio cholerae, represent ancient and highly variable regions in bacterial genomes. The SI is extensive, housing 179 integron cassettes, mostly with unknown functions. Although 19 cassettes encode toxin-antitoxin (TA) systems, which stabilize the array, the intricacies of the SI are challenging to study due to its size and unique integrase. To investigate the SI's impact on V. cholerae, we developed the SeqDelTA approach, enabling the gradual deletion of the SI. This deletion facilitates the use of standard genetic tools without SI interference. Our in-depth analysis of the resulting ∆SI strain, covering various aspects, demonstrated no significant alterations in V. cholerae's physiology. Despite their extended coevolution, SCIs appear to be genetically isolated from the host genome.
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.
2020-07-01 | GSE153553 | GEO
Project description:Antibiotic resistome in PM1.0 from wastewater treatment plants
Project description:Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here we demonstrate that inactivation of a central regulator of iron homeostasis (fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated a substantial reorganization of the Fur regulon in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, over-expression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, while inhibition of the SOS response-mediated mutagenesis had no such effect in fur deficient population. In sum, our work revealed the central role of iron metabolism in de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies. We used microarrays to identify genotype specific transcriptional changes under severe DNA damaging conditions (antibiotic ciprofloxacin). We treated Escherichia coli cells with a highly toxic level of ciprofloxacin (gyrase inhibitor) for RNA extraction and hybridization on Affymetrix microarrays. We planned to find genotype specific transcriptional responses using WT control (BW25113) and fur-knockout mutant (selected from the KEIO collection) strains during antibiotic treatments. For each treatment type we used two biological replicates.