Project description:Mycobacteria can synthesize NAD+ using either the de novo biosynthesis pathway or the salvage pathway. The deletion of the three genes involved specifically in the NAD+ de novo biosynthesis pathway in the human pathogen Mycobacterium tuberculosis had no effect on the growth of the strain in vivo. In contrast, the same deletion in the bovine pathogen Mycobacterium bovis resulted in a strain that could not grow in vivo and could only grow in vitro with substantial nicotinamide supplmentation. This striking difference was attributed to the known defect in the nicotinamidase PncA of M. bovis, since introducing the M. tuberculosis pncA gene into the M. bovis strain defective for de novo NAD+ biosynthesis restored growth in vitro and in vivo. This study demonstrates that NAD+ starvation is a cidal event in mycobacteria and confirms that enzymes common to the de novo and salvage pathways may be good drug targets. We also propose that simultaneously targeting both the salvage and the de novo NAD+ biosynthesis pathways represents a potentially effective way to treat infection with tubercle bacilli. To characterize the lethality induced by nicotinamide starvation transcriptional profiling of the auxotrophs was performed. Triplicate 50 mL cultures of M. tuberculosis and M. bovis Delta nadABC mutants were grown in 7H9 OADC glycerol 0.05% tween broth in 500 mL roller bottles to an OD600nm= 0.1 in a roller incubator at 37°C. The cells were washed 1x in PBS and resuspended in 50 mL 7H9 OADC glycerol 0.05% tween broth with or without 20mg/L nicotinamide and returned to the incubator. After 7 days, cultures were harvested. Three biological replicates of each of two species with one dye-flip each
Project description:Mycobacteria can synthesize NAD+ using either the de novo biosynthesis pathway or the salvage pathway. The deletion of the three genes involved specifically in the NAD+ de novo biosynthesis pathway in the human pathogen Mycobacterium tuberculosis had no effect on the growth of the strain in vivo. In contrast, the same deletion in the bovine pathogen Mycobacterium bovis resulted in a strain that could not grow in vivo and could only grow in vitro with substantial nicotinamide supplmentation. This striking difference was attributed to the known defect in the nicotinamidase PncA of M. bovis, since introducing the M. tuberculosis pncA gene into the M. bovis strain defective for de novo NAD+ biosynthesis restored growth in vitro and in vivo. This study demonstrates that NAD+ starvation is a cidal event in mycobacteria and confirms that enzymes common to the de novo and salvage pathways may be good drug targets. We also propose that simultaneously targeting both the salvage and the de novo NAD+ biosynthesis pathways represents a potentially effective way to treat infection with tubercle bacilli. To characterize the lethality induced by nicotinamide starvation transcriptional profiling of the auxotrophs was performed. Triplicate 50 mL cultures of M. tuberculosis and M. bovis Delta nadABC mutants were grown in 7H9 OADC glycerol 0.05% tween broth in 500 mL roller bottles to an OD600nm= 0.1 in a roller incubator at 37°C. The cells were washed 1x in PBS and resuspended in 50 mL 7H9 OADC glycerol 0.05% tween broth with or without 20mg/L nicotinamide and returned to the incubator. After 7 days, cultures were harvested.
Project description:Type 2 diabetes (T2D) has become an epidemic in our modern lifestyle, likely due to calorie-rich diets overwhelming our adaptive metabolic pathways. One such pathway is mediated by nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ biosynthesis, and the NAD+-dependent protein deacetylase SIRT1. Here we show that NAMPT-mediated NAD+ biosynthesis is severely compromised in metabolic organs by high-fat diet (HFD). Strikingly, nicotinamide mononucleotide (NMN), a product of the NAMPT reaction and a key NAD+ intermediate, ameliorates glucose intolerance by restoring NAD+ levels in HFD-induced T2D mice. NMN also enhances hepatic insulin sensitivity and restores gene expression related to oxidative stress, inflammatory response, and circadian rhythm, partly through SIRT1 activation. Furthermore, NAD+ and NAMPT levels show significant decreases in multiple organs during aging, and NMN improves glucose intolerance and lipid profiles in age-induced T2D mice. These findings provide critical insights into a novel intervention against diet- and age-induced T2D. 4 regular chow fed mice (RC1-4) vs 4 high-fat diet fed (HFD) (HFD1a-4a) mice were analyzed on one chip (Chip-A). 4 HFD mice (HFD1b-4b) vs 4 HFD-NMN treated mice (NMN1-4) were examined on the other chip (Chip-B).
Project description:Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in diverse cellular processes including metabolism, DNA repair, and aging. NAD metabolism is critical to maintain cellular homeostasis in response to environmental signals, however, how it is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer mammalian cells with the resistance to inhibitors of NAMPT, the rate limiting enzyme in the main vertebrate NAD salvage pathway. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a key precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. This bacteria-enabled bypass of the pharmacologically induced metabolic block in mammalian cells represents a novel paradigm in drug resistance. This host-microbe metabolic interaction also dramatically enhances the hepatic NAD-boosting efficiency of nicotinamide and nicotinamide riboside supplementation, demonstrating a crucial role of microbes, gut microbiota in particular, in systemic NAD metabolism.
Project description:Investigation of transcriptome changes in four human cell lines (BJ, BJ-5ta, U2OS and HeLa) after treatment for 24 hours with nicotinamide adenine dinucleotide (NAD+). Cells were untreated as the control condition. Nanopore sequencing of cDNA was performed after library preparation with the ONT SQK-PCB109 kit.
Project description:In the present study, we developed a chemical method to produce dihydro nicotinamide mononucleotide (NMNH), which is the reduced-form of nicotinamide mononucleotide (NMN). We demonstrated that NMNH was a better nicotinamide adenine dinucleotide (NAD+) enhancer compared to NMN both in vitro and in vivo mediated by mononucleotide adenylyltransferase (NMNAT). Additionally, NMNH increased the reduced NAD (NADH) levels in cells and in mouse liver. Metabolomic analysis revealed that NMNH inhibited glycolysis and TCA cycle. In vitro experiments demonstrated that NMNH induced cell cycle arrest and suppressed cell growth. Nevertheless, NMNH treatment did not cause observable difference in mice. Taken together, our work demonstrates that NMNH is a potent NAD+ enhancer, and suppresses glycometabolism and cell growth.
Project description:Type 2 diabetes (T2D) has become an epidemic in our modern lifestyle, likely due to calorie-rich diets overwhelming our adaptive metabolic pathways. One such pathway is mediated by nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ biosynthesis, and the NAD+-dependent protein deacetylase SIRT1. Here we show that NAMPT-mediated NAD+ biosynthesis is severely compromised in metabolic organs by high-fat diet (HFD). Strikingly, nicotinamide mononucleotide (NMN), a product of the NAMPT reaction and a key NAD+ intermediate, ameliorates glucose intolerance by restoring NAD+ levels in HFD-induced T2D mice. NMN also enhances hepatic insulin sensitivity and restores gene expression related to oxidative stress, inflammatory response, and circadian rhythm, partly through SIRT1 activation. Furthermore, NAD+ and NAMPT levels show significant decreases in multiple organs during aging, and NMN improves glucose intolerance and lipid profiles in age-induced T2D mice. These findings provide critical insights into a novel intervention against diet- and age-induced T2D.
Project description:Extracellular signaling and nutrient availability are major factors for cell fate decision. Responds to extracellular information requires metabolic alterations and differential gene expression. However, how cells integrate extracellular signals (e.g. hormones) and cellular metabolic status to coordinate transcriptional outcome is poorly understood. We hypothesized that fluctuations in nuclear nicotinamide adenine dinucleotide (NAD+) levels act as a signal to integrate cellular glucose metabolism and transcription program during adipocyte differentiation. To test this hypothesis, we performed RNA-seq on control, Nmnat1 and Parp1 knockdown 3T3-L1 cells during various time point of differentiation.
Project description:NAD+is modulated by conditions of metabolic stress and has been reported to decline with aging, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome, and questioned if tissue NAD+levels are depressed with aging. We supplemented 12 aged men with NR 1g per day for 21-days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways. NR also depressed levels of circulating inflammatory cytokines. In an additional study, 31P magnetic resonance spectroscopy-based NAD+ measurement in muscle and brain showed no difference between young and aged individuals. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR, while suggesting that NAD+ decline is not associated with chronological aging per se in human muscle or brain.
Project description:Doxorubicin (DOX) is the cornerstone of chemotherapy regimens for many malignancies, but its clinical usage is limited by severe cardiotoxicity. Accumulating evidence suggest that nicotinamide adenine dinucleotide (NAD+) depletion contributes to DOX-induced cardiotoxicity, making NAD+ boosting an appealing strategy. Nicotinamide mononucleotide (NMN) is an NAD+ precursor that shows promising therapeutic effects in various diseases. To understand the impact of NMN on gene expression in myocardial tissue of DOX-exposed mice, a RNA-seq assay was carried out.