Project description:Mycobacteria can synthesize NAD+ using either the de novo biosynthesis pathway or the salvage pathway. The deletion of the three genes involved specifically in the NAD+ de novo biosynthesis pathway in the human pathogen Mycobacterium tuberculosis had no effect on the growth of the strain in vivo. In contrast, the same deletion in the bovine pathogen Mycobacterium bovis resulted in a strain that could not grow in vivo and could only grow in vitro with substantial nicotinamide supplmentation. This striking difference was attributed to the known defect in the nicotinamidase PncA of M. bovis, since introducing the M. tuberculosis pncA gene into the M. bovis strain defective for de novo NAD+ biosynthesis restored growth in vitro and in vivo. This study demonstrates that NAD+ starvation is a cidal event in mycobacteria and confirms that enzymes common to the de novo and salvage pathways may be good drug targets. We also propose that simultaneously targeting both the salvage and the de novo NAD+ biosynthesis pathways represents a potentially effective way to treat infection with tubercle bacilli. To characterize the lethality induced by nicotinamide starvation transcriptional profiling of the auxotrophs was performed. Triplicate 50 mL cultures of M. tuberculosis and M. bovis Delta nadABC mutants were grown in 7H9 OADC glycerol 0.05% tween broth in 500 mL roller bottles to an OD600nm= 0.1 in a roller incubator at 37°C. The cells were washed 1x in PBS and resuspended in 50 mL 7H9 OADC glycerol 0.05% tween broth with or without 20mg/L nicotinamide and returned to the incubator. After 7 days, cultures were harvested. Three biological replicates of each of two species with one dye-flip each
Project description:Mycobacteria can synthesize NAD+ using either the de novo biosynthesis pathway or the salvage pathway. The deletion of the three genes involved specifically in the NAD+ de novo biosynthesis pathway in the human pathogen Mycobacterium tuberculosis had no effect on the growth of the strain in vivo. In contrast, the same deletion in the bovine pathogen Mycobacterium bovis resulted in a strain that could not grow in vivo and could only grow in vitro with substantial nicotinamide supplmentation. This striking difference was attributed to the known defect in the nicotinamidase PncA of M. bovis, since introducing the M. tuberculosis pncA gene into the M. bovis strain defective for de novo NAD+ biosynthesis restored growth in vitro and in vivo. This study demonstrates that NAD+ starvation is a cidal event in mycobacteria and confirms that enzymes common to the de novo and salvage pathways may be good drug targets. We also propose that simultaneously targeting both the salvage and the de novo NAD+ biosynthesis pathways represents a potentially effective way to treat infection with tubercle bacilli. To characterize the lethality induced by nicotinamide starvation transcriptional profiling of the auxotrophs was performed. Triplicate 50 mL cultures of M. tuberculosis and M. bovis Delta nadABC mutants were grown in 7H9 OADC glycerol 0.05% tween broth in 500 mL roller bottles to an OD600nm= 0.1 in a roller incubator at 37°C. The cells were washed 1x in PBS and resuspended in 50 mL 7H9 OADC glycerol 0.05% tween broth with or without 20mg/L nicotinamide and returned to the incubator. After 7 days, cultures were harvested.
Project description:Type 2 diabetes (T2D) has become an epidemic in our modern lifestyle, likely due to calorie-rich diets overwhelming our adaptive metabolic pathways. One such pathway is mediated by nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ biosynthesis, and the NAD+-dependent protein deacetylase SIRT1. Here we show that NAMPT-mediated NAD+ biosynthesis is severely compromised in metabolic organs by high-fat diet (HFD). Strikingly, nicotinamide mononucleotide (NMN), a product of the NAMPT reaction and a key NAD+ intermediate, ameliorates glucose intolerance by restoring NAD+ levels in HFD-induced T2D mice. NMN also enhances hepatic insulin sensitivity and restores gene expression related to oxidative stress, inflammatory response, and circadian rhythm, partly through SIRT1 activation. Furthermore, NAD+ and NAMPT levels show significant decreases in multiple organs during aging, and NMN improves glucose intolerance and lipid profiles in age-induced T2D mice. These findings provide critical insights into a novel intervention against diet- and age-induced T2D. 4 regular chow fed mice (RC1-4) vs 4 high-fat diet fed (HFD) (HFD1a-4a) mice were analyzed on one chip (Chip-A). 4 HFD mice (HFD1b-4b) vs 4 HFD-NMN treated mice (NMN1-4) were examined on the other chip (Chip-B).
Project description:Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in diverse cellular processes including metabolism, DNA repair, and aging. NAD metabolism is critical to maintain cellular homeostasis in response to environmental signals, however, how it is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer mammalian cells with the resistance to inhibitors of NAMPT, the rate limiting enzyme in the main vertebrate NAD salvage pathway. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a key precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. This bacteria-enabled bypass of the pharmacologically induced metabolic block in mammalian cells represents a novel paradigm in drug resistance. This host-microbe metabolic interaction also dramatically enhances the hepatic NAD-boosting efficiency of nicotinamide and nicotinamide riboside supplementation, demonstrating a crucial role of microbes, gut microbiota in particular, in systemic NAD metabolism.
Project description:Cockayne Syndrome (CS) is a multi-system premature aging disorder caused by mutations in the genes involved in repairing DNA damage. CS patients display features including short stature, microcephaly, premature aging, neurodegeneration, photosensitivity, vision impairment, hearing loss, and bone and kidney abnormalities. Intracellular nicotinamide dinucleotide (NAD+) deprivation is one of the key molecular characteristics of CS patient-derived cells. NAD+ has critical roles in regulating cellular health, stress responses, and is important for maintaining renal homeostasis. While kidney dysfunction has been reported to be an important cause of death in CS patients, the molecular pathogenesis and potential linkage to NAD+ is not understood. In this study, we report kidney pathology in CS model mice, including renal atrophy, decreased glomerular filtration, and various types of lesions centering around the tubular epithelial cells. We further find that the NAD+ biosynthetic pathways are impaired in CS kidney from mice and in human cells.
Project description:Investigation of transcriptome changes in four human cell lines (BJ, BJ-5ta, U2OS and HeLa) after treatment for 24 hours with nicotinamide adenine dinucleotide (NAD+). Cells were untreated as the control condition. Nanopore sequencing of cDNA was performed after library preparation with the ONT SQK-PCB109 kit.
Project description:In the present study, we developed a chemical method to produce dihydro nicotinamide mononucleotide (NMNH), which is the reduced-form of nicotinamide mononucleotide (NMN). We demonstrated that NMNH was a better nicotinamide adenine dinucleotide (NAD+) enhancer compared to NMN both in vitro and in vivo mediated by mononucleotide adenylyltransferase (NMNAT). Additionally, NMNH increased the reduced NAD (NADH) levels in cells and in mouse liver. Metabolomic analysis revealed that NMNH inhibited glycolysis and TCA cycle. In vitro experiments demonstrated that NMNH induced cell cycle arrest and suppressed cell growth. Nevertheless, NMNH treatment did not cause observable difference in mice. Taken together, our work demonstrates that NMNH is a potent NAD+ enhancer, and suppresses glycometabolism and cell growth.
Project description:Type 2 diabetes (T2D) has become an epidemic in our modern lifestyle, likely due to calorie-rich diets overwhelming our adaptive metabolic pathways. One such pathway is mediated by nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ biosynthesis, and the NAD+-dependent protein deacetylase SIRT1. Here we show that NAMPT-mediated NAD+ biosynthesis is severely compromised in metabolic organs by high-fat diet (HFD). Strikingly, nicotinamide mononucleotide (NMN), a product of the NAMPT reaction and a key NAD+ intermediate, ameliorates glucose intolerance by restoring NAD+ levels in HFD-induced T2D mice. NMN also enhances hepatic insulin sensitivity and restores gene expression related to oxidative stress, inflammatory response, and circadian rhythm, partly through SIRT1 activation. Furthermore, NAD+ and NAMPT levels show significant decreases in multiple organs during aging, and NMN improves glucose intolerance and lipid profiles in age-induced T2D mice. These findings provide critical insights into a novel intervention against diet- and age-induced T2D.
Project description:Nicotinamide, a main precursor of NAD+, is essential for cellular fuel respiration, energy production, and other cellular processes. Transporters for other precursors of NAD+ such as nicotinic acid and nicotinamide mononucleotide have been identified, but the cellular transporter of nicotinamide has not been elucidated. Here, we demonstrated that equilibrative nucleoside transporters 1 and 2 (ENT1 and 2, encoded by SLC29A1/2) drove cellular nicotinamide uptake and set nicotinamide metabolism homeostasis. In addition, ENT1/2 exhibited a strong capacity to change the composition of cellular metabolites and the profile of transcripts, especially those related to nicotinamide. Then, we further found that ENT1/2 could regulate cellular respiration and senescence, which are universally acknowledged as nicotinamide biological functions, to which the NAD+ pool level and mitochondrial status influenced by ENT1/2 made important contributions. Together, ENT1 and ENT2 act as both cellular nicotinamide-level keepers and nicotinamide biological regulators through their NAM transport functions.
Project description:Extracellular signaling and nutrient availability are major factors for cell fate decision. Responds to extracellular information requires metabolic alterations and differential gene expression. However, how cells integrate extracellular signals (e.g. hormones) and cellular metabolic status to coordinate transcriptional outcome is poorly understood. We hypothesized that fluctuations in nuclear nicotinamide adenine dinucleotide (NAD+) levels act as a signal to integrate cellular glucose metabolism and transcription program during adipocyte differentiation. To test this hypothesis, we performed RNA-seq on control, Nmnat1 and Parp1 knockdown 3T3-L1 cells during various time point of differentiation.