Project description:Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination. How it operates in cells remains elusive. Here we developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembly of extensive NPFs. DSB end-tethering promotes coordinated homology search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search orchestrated by chromatin organizers, long-range resection, end-tethering, specialized genetic elements, and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Project description:Homologous recombination (HR) is an ubiquitous DNA double-strand break (DSB) repair mechanism. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA nucleoprotein filament (NPF) assembled on each DSB ends. In contrast to the extensive knowledge of DNA damage checkpoint (DDC)-induced changes in chromatin composition and mobility, the questions of if, how, and to what extent a DSB impacts the spatial organization of chromatin, and whether this organization in turn influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in S. cerevisiae. While cohesin folds chromosomes into cohesive arrays of ~20 kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during HR repair.
Project description:Homologous recombination (HR) is an ubiquitous DNA double-strand break (DSB) repair mechanism. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA nucleoprotein filament (NPF) assembled on each DSB ends. In contrast to the extensive knowledge of DNA damage checkpoint (DDC)-induced changes in chromatin composition and mobility, the questions of if, how, and to what extent a DSB impacts the spatial organization of chromatin, and whether this organization in turn influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in S. cerevisiae. While cohesin folds chromosomes into cohesive arrays of ~20 kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during HR repair.
2021-07-21 | GSE179641 | GEO
Project description:Cohesin regulates homology search during recombinational DNA repair
Project description:Homologous recombination (HR) is crucial for genetic exchange, accurate repair of DNA double-strand breaks and pivotal for genome integrity. HR uses homologous sequences for repair, but how homology search, the exploration of the genome for homologous DNA sequences, is conducted in the nucleus remains poorly understood. Here, we use time-resolved chromatin immunoprecipitations of repair proteins to monitor homology search in vivo. We found that homology search proceeds by a probing mechanism, which commences around the break and samples preferentially on the broken chromosome. However, elements thought to instruct chromosome loops mediate homology search shortcuts, and centromeres, which cluster within the nucleus, may facilitate homology search on other chromosomes. Our study thus revealed crucial parameters for homology search in vivo and emphasizes the importance of linear distance, chromosome architecture and proximity for recombination efficiency. 2 new custom ChIP-chip platforms used; both Nimblegen; differ in oligo density: (platform 1: 2006-07-18_Scerevisiae_ChIP_Stefan Jentsch MPI Biochemistry S.cerevisiae 385K Tiling Array Version 1) ( platform 2: 100304_Scer2_MS_Chip_Stefan Jentsch MPI Biochemistry S.cerevisiae 135K Tiling Array Version 2) ChIP-chip profiling of DSB repair factors (Rad51, Rad52, RPA, gamma-H2A) upon single inducible DSBs in S.cerevisiae
Project description:The formation of RAD51/DMC1 filaments on single-stranded (ss)DNAs, which is essential for homology search and strand exchange in DNA double-strand break (DSB) repair and for the protection of stalled DNA replication forks, is tightly regulated in time and space. FIGNL1 AAA+++ ATPase plays positive and negative roles in the RAD51-mediated recombination in human cells. However, the role of FIGNL1 in gametogenesis remains unsolved. Here, we characterized a germ-line-specific conditional knockout (cKO) mouse of FIGNL1. The Fignl1 cKO male mice showed defective chromosome synapsis and impaired meiotic DSB repair with the accumulation of RAD51/DMC1 on chromosomes in mid-meiotic prophase I, supporting a role of FIGNL1 in a post-assembly stage of RAD51/DMC1 filaments. Fignl1 cKO spermatocytes accumulate RAD51 and DMC1 ensembles on chromosomes not only in early meiotic prophase I but also in meiotic S-phase. These RAD51/DMC1 assemblies are independent of meiotic DSB formation. Finally, we showed that purified FIGNL1 dismantles RAD51 filament on double-stranded (ds)DNA as well as ssDNA. These results suggest a critical role of FIGNL1 to limit the uncontrolled assembly of RAD51 and DMC1 on native dsDNAs during the meiotic S-phase and meiotic prophase I.
Project description:Homologous recombination (HR) is crucial for genetic exchange, accurate repair of DNA double-strand breaks and pivotal for genome integrity. HR uses homologous sequences for repair, but how homology search, the exploration of the genome for homologous DNA sequences, is conducted in the nucleus remains poorly understood. Here, we use time-resolved chromatin immunoprecipitations of repair proteins to monitor homology search in vivo. We found that homology search proceeds by a probing mechanism, which commences around the break and samples preferentially on the broken chromosome. However, elements thought to instruct chromosome loops mediate homology search shortcuts, and centromeres, which cluster within the nucleus, may facilitate homology search on other chromosomes. Our study thus revealed crucial parameters for homology search in vivo and emphasizes the importance of linear distance, chromosome architecture and proximity for recombination efficiency.
Project description:Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesinâs Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover an unexpected functional asymmetry within the heart of cohesinâs highly conserved ABC-like ATPase machinery and show that an activity associated with one of cohesinâs two ATPase sites drives DNA release from cohesin rings. This key mechanism is conserved from yeast to humans. We propose that Eco1 locks cohesin rings around the sister chromatids by counteracting an asymmetric cohesin-associated ATPase activity. Effect of mutations in Smc1 and Smc3 on cohesin loading onto chromosomes
Project description:RAG endonuclease initiates V(D)J recombination in progenitor (pro)-B cells. Upon binding a recombination center (RC)-based JH, RAG scans upstream chromatin via loop extrusion, potentially mediated by cohesin, to locate Ds and assemble a DJH-based RC. CTCF looping factor-bound elements (CBEs) within the IGCR1 element upstream of the Ds impede RAG-scanning; but their inactivation allows scanning to proximal VHs where additional CBEs activate rearrangement and impede scanning any further upstream. Distal VH utilization is thought to involve diffusional RC access following large-scale Igh locus contraction. Here, we test the potential of linear RAG-scanning to mediate distal VH usage in G1-arrested, v-Abl-pro-B cell lines, which undergo robust D-to-JH rearrangement, but little VH-to-DJH rearrangement, presumably due to lack of locus contraction. Through an auxin-induced approach, we degrade cohesin-component Rad21 or CTCF in these G1-arrested lines, which maintain substantial viability throughout four-day experiments. Rad21 degradation eliminated all V(D)J recombination and RAG-scanning-associated interactions, except RC-located DQ52-to-JH joining in which synapsis occurs by diffusion11. Remarkably, while CTCF degradation suppressed most CBE-based chromatin interactions, it promoted robust RC interactions with, and VH-to-DJH joining of, distal VHs, with patterns similar to those of "locus-contracted" primary pro-B cells. Thus, down-modulation of CTCF-bound scanning-impediment activity promotes cohesin-driven RAG-scanning across the 2.7Mb Igh locus.