Project description:We sought to investigate the scope of transcriptome analyses of peppers subjected to four major phytohormones. For this, At the 6-true-leaf stage, pepper plants were sprayed at underside of leaves with 5 mM sodium salicylate (SA), 100 μM methyl jasmonate (JA), 5 mM ethephone (ET), 100 μM (±)-ABA, or distilled water (mock). For RNA-seq library construction, the third or fourth leaves from four plants were harvested per replicate at 0, 1, 3, 6, 12, and 24 h after treatment. A total of 187.8 Gb of transcriptome data were generated using transcriptome analysis pipelines consisting of quality control, quantification, and differential gene expression analyses. The extensive transcriptome data obtained will provide valuable information for future studies of crops exposed to responsive of phytohormones.
Project description:Drought is one of the major factor that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants were grown in a greenhouse and drought stressed by withholding water for one week. Plants adapted to the decreasing water content of the substrate by adjustment of their osmotic potential in roots by accumulation of raffinose, glucose, galactinol and proline. In contrast in leaves levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves whereas the concentration of polyamines was reduced in roots. These polyamines are suggested to rather act as stress protectants than for osmotic adjustment. To understand the molecular basis of the response to this early drought stress better, four suppression subtractive hybridisation libraries from leaves and roots were constructed. Microarray technique was used to identify differentially expressed genes. A total of 109 unique ESTs were detected. The diversity of the putative functions of all identified genes confirms the complexity of the plant response to drought stress. Keywords: Transcription profiling Two-condition experiment in roots and leaves, control leaves (CL) vs. drought-stressed leaves (DL) and control roots (CR) vs. drought-stressed roots (DR). Biological replicates: 4 control (1-4), drought-stressed (1-4), independently grown and harvested. One swap replicate per array.
Project description:Drought is one of the major factor that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants were grown in a greenhouse and drought stressed by withholding water for one week. Plants adapted to the decreasing water content of the substrate by adjustment of their osmotic potential in roots by accumulation of raffinose, glucose, galactinol and proline. In contrast in leaves levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves whereas the concentration of polyamines was reduced in roots. These polyamines are suggested to rather act as stress protectants than for osmotic adjustment. To understand the molecular basis of the response to this early drought stress better, four suppression subtractive hybridisation libraries from leaves and roots were constructed. Microarray technique was used to identify differentially expressed genes. A total of 109 unique ESTs were detected. The diversity of the putative functions of all identified genes confirms the complexity of the plant response to drought stress. Keywords: Transcription profiling
Project description:The colonization of Capsicum annuum roots by Fusarium oxysporum Fo47 induces resistance responses on the plant. Fo47 is a non-pathogenic strain of Fusarium oxysporum. Fo47 colonizes only the most outer layers of the root surface but it does not colonize inner tissues. Pre-treatment of roots with Fo47 reduces the symptom development produced by later pathogen inoculation. The expression of genes in distal tissues was determined by microarray analysis of stems of Fo47-treated plants. Capsicum annuum samples were analyzed using Affymetrix chips of the close-related species Solanum lycopersicum.