Project description:We present evidence for an autocrine cytokine network in human ovarian cancer that has paracrine actions on the tumour microenvironment. In experiments using bioinformatics analysis of large gene expression array datasets and ovarian cancer biopsies, we found that the inflammatory cytokines TNF-α and IL-6, the chemokine receptor CXCR4 and its ligand CXCL12, are co-regulated in malignant cells. We named this co-regulation the TNF network. We had access to a unique set of ascites cell samples from patients with advanced ovarian cancer treated with the therapeutic anti-human TNF-α antibody infliximab. Serial samples pre and during treatment were obtained during paracentesis (drainage of ascites fluid for symptomatic relief). In nine of these patients there was sufficient mRNA available for gene expression profile analysis before treatment. The Affymetrix GeneChip Human Genome U133Plus 2.0 arrays were used to define gene expression profiles in each of the ascites cell samples.
Project description:We present evidence for an autocrine cytokine network in human ovarian cancer that has paracrine actions on the tumour microenvironment. In experiments using bioinformatics analysis of large gene expression array datasets and ovarian cancer biopsies, we found that the inflammatory cytokines TNF-α and IL-6, the chemokine receptor CXCR4 and its ligand CXCL12, are co-regulated in malignant cells. We named this co-regulation the TNF network. We had access to a unique set of ascites cell samples from patients with advanced ovarian cancer treated with the therapeutic anti-human TNF-α antibody infliximab. Serial samples pre and during treatment were obtained during paracentesis (drainage of ascites fluid for symptomatic relief). In nine of these patients there was sufficient mRNA available for gene expression profile analysis before treatment.
Project description:To identify the potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma Microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP) isolated from fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma, and the results were analyzed by paired T-test using BRB-ArrayTools
Project description:To identify the potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma Microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP) isolated from fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma, and the results were analyzed by paired T-test using BRB-ArrayTools Gene expression profiling was completed for 10 SP and MP pairs using the Affymetrix human U133 Plus 2.0 Arrays
Project description:Ovarian cancer is characterized by transcoelomic metastasis into the peritoneal cavity. The peritoneal malignant ascites is enriched with ovarian cancer cells and a small amount of tumor-associated immune cells which create a unique microenvironment actively contributing to progression of the disease. However, it is remain unclear how chemonaive and post-chemotherapy ovarian cancer ascitic fluids influence on cancer cells. To address this issue, we performed RNAseq analysis of primary cultures of ovarian cancer cells incubated for 3 days in the presence of ascites from the same patients before and after chemotherapy. We found that ascites after therapy causes a significant changes in transcriptomic profiles of cancer cells, and these changes are similar in samples obtained from all patients (n=4). Enrichment analysis of differentially expressed genes in tumor cells incubated with ascites after chemotherapy identified prominent up-regulation of genes associated with DNA repair, mitotic cell cycle regulation, and cell cycle checkpoints. These findings demonstrate how ascitic fluids persisted after chemotherapy can contribute to the emergence of tumor chemoresistance during short time period.
Project description:Ovarian cancer is characterized by transcoelomic metastasis into the peritoneal cavity. The peritoneal malignant ascites is enriched with ovarian cancer cells and a small amount of tumor-associated immune cells which create a unique microenvironment actively contributing to progression of the disease. However, it is remain unclear how cancer cells communicate to its local environment under the influence of chemotherapy. To address this issue, we performed LC-MS/MS analyses of ovarian cancer ascites from the same patients before and after chemotherapy. We found that neoadjuvant chemotherapy causes a significant changes in the composition of ascites, and these changes are similar in samples obtained from all patients (n=10). Functional annotation of upregulated proteins with the use of KEGG and GO databases revealed that malignant ascites after chemotherapy were enriched with the cluster of spliceosomal proteins. These splicing factors were linked to induction of epithelial-to-mesenchymal transition leading to a more aggressive phenotype of cancer cells.
Project description:To characterize the spatial tumor microenvironment (TME) of high-grade serous ovarian cancer (HGSC) at the single cell level, we performed single-cell RNA sequencing (scRNA-seq) on 48 tumor or ascites samples from 29 HGSC patients. This data set includes paired scRNA-seq data from chemo-naive and post-neoadjuvant chemotherapy (IDS) samples of 22 HGSC patients.