Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:As part of our study in understanding the role of SP140 in inflammatory pathways in macrophages, we inhibited SP140 mRNA using siRNA. Peripheral blood mononuclear cells (PBMCs) were obtained from whole blood of healthy donors (from Sanquin Institute Amsterdam or from GSK Stevenage Blood Donation Unit) by Ficoll density gradient (Invitrogen). CD14+ monocytes were positively selected from PBMCs using CD14 Microbeads according to the manufacturer’s instructions (Miltenyi Biotec). CD14+ cells were differentiated with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) (R&D systems) for 3 days followed by 3 days of polarization into classically activated (inflammatory) M1 macrophages (100 ng/mL IFN-γ; R&D systems). M1 macrophages were transfected with siGENOME human smartpool SP140 siRNA or non-targeting scrambled siRNA for 48h with DharmaFECT™ transfection reagents according to manufacturer’s protocol (Dharmacon). The cells were left unstimulated or stimulated with 100 ng/mL LPS (E. coli 0111:B4; Sigma) for 4h (for qPCR) or 24h (for Elisa). The cells were lysed (ISOLATE II RNA Lysis Buffer RLY-Bioline) for RNA extraction.150 ng total RNA was labelled using the cRNA labelling kit for Illumina BeadArrays (Ambion) and hybridized with Ref8v3 BeadArrays (Illumina). Arrays were scanned on a BeadArray 500GX scanner and data were normalized using quantile normalization with background subtraction (GenomeStudio software; Illumina). This submission only contains processed data
Project description:Recent studies suggest the presence of both âclassically activatedâ M1 and âalternatively activatedâ M2 macrophages in human atherosclerotic tissue, yet due to the lack of validated markers the reported localization patterns of these macrophage phenotypes within plaques are ambiguous. In the present study, we searched for markers that indisputably can identify differentiated M1 and M2 macrophages independently of stimuli that affect the activation status of the two subpopulations. We used these validated markers to assess the presence of M1 and M2 macrophages in different zones of human carotid artery atherosclerotic plaques obtained from 12 patients. Using microarray and qPCR technology we show that the frequently used macrophage subpopulation markers MCP-1 and CD206 do not discriminate between M1 and M2 macrophages. However, we confirm the subtype specificity of the classical M2 marker CD163 and we report that the genes INHBA and DSP (both M1) and SEPP1 and MARCKS (both M2) are highly suitable for macrophage phenotyping. mRNA expression of the pan-macrophage marker CD68 in the shoulder zones of the plaques and in adjacent tissue segments correlated positively with mRNA expression levels of SEPP1, MARCKS and CD163 (r=0.86, 0.94 and 0.96, and r= 0.86, 0.98 and 0.69, respectively) but not with the expression of the M1 markers DSP and INHBA. In contrast, mRNA expression of CD68 in the core of the plaques correlated positively with expression of DSP and INHBA (r=0.73 and 0.49) but not with SEPP1, MARCKS and CD163. These findings suggest that M1 macrophages predominate in the core of human carotid atherosclerotic plaques while M2 macrophages prevail at the periphery of the plaque. Keywords: Expression profiling by array Monocytes from healthy volunteers were differentiated into M1 and M2 macrophages by incubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF), respectively. After 5 days cells were exposed to oxidized LDL. Total RNA was isolated and subjected to gene expression profiling.
Project description:Recent studies suggest the presence of both “classically activated” M1 and “alternatively activated” M2 macrophages in human atherosclerotic tissue, yet due to the lack of validated markers the reported localization patterns of these macrophage phenotypes within plaques are ambiguous. In the present study, we searched for markers that indisputably can identify differentiated M1 and M2 macrophages independently of stimuli that affect the activation status of the two subpopulations. We used these validated markers to assess the presence of M1 and M2 macrophages in different zones of human carotid artery atherosclerotic plaques obtained from 12 patients. Using microarray and qPCR technology we show that the frequently used macrophage subpopulation markers MCP-1 and CD206 do not discriminate between M1 and M2 macrophages. However, we confirm the subtype specificity of the classical M2 marker CD163 and we report that the genes INHBA and DSP (both M1) and SEPP1 and MARCKS (both M2) are highly suitable for macrophage phenotyping. mRNA expression of the pan-macrophage marker CD68 in the shoulder zones of the plaques and in adjacent tissue segments correlated positively with mRNA expression levels of SEPP1, MARCKS and CD163 (r=0.86, 0.94 and 0.96, and r= 0.86, 0.98 and 0.69, respectively) but not with the expression of the M1 markers DSP and INHBA. In contrast, mRNA expression of CD68 in the core of the plaques correlated positively with expression of DSP and INHBA (r=0.73 and 0.49) but not with SEPP1, MARCKS and CD163. These findings suggest that M1 macrophages predominate in the core of human carotid atherosclerotic plaques while M2 macrophages prevail at the periphery of the plaque. Keywords: Expression profiling by array
Project description:We show that the epididymal white adipose tissue harbors 4 subpopulations of macrophages (VAM1, VAM2, PreVAM and DPs), 2 subpopulations of Dendritic Cells (CD11B+CD103- and CD11B-CD103+) and monocytes. VAMs display a gene signature enriched in pathways related to anti-inflammatory/ detoxifying and repair processes. Our gene expression work shows no evidence of an M2 to a Classically Activated/M1 shift during diet-induced obesity (DIO). Gene expression of VAMs or DP macrophages cannot be defined as M1 or M1-like. Our data are more compatible with the category of “Metabolically-activated” macrophages (MMe)
Project description:The purpose of this study is to identify novel markers for the type II activated macrophage, which is generated by classical stimulation in the presence if IgG immune complexes. These cells gererally produce high levels of IL-10 and low levels of IL-12, in comparison to classically activated macrophages. We wish to identify gene expression which is enriched in Type II activated macrophages in comparison to classically activated macrophages. Experiment Overall Design: The design of this experiment is to simulateously stimulate two popultions of macrophages and compare their gene expression. In this case, macrophages are primed overnight with IFN-gamma, washed, then stimulated with LPS (Classically) or LPS+Immune complexes (Type II).
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.